por egualbert » Ter Jun 12, 2012 17:16
me desculpe, mais sou muito leigo nisso e não consegui fazer essa questão, por favor me ajudem!!!!
dada a função quadratica definida por f(x)=

e os pontos A(-2,0) e B (u,0) com u sendo diferenre de -2 pertecentes ao grafico de F, determine o valor de u.
-
egualbert
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Jun 12, 2012 16:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: lincenciatura em fisica
- Andamento: cursando
por Russman » Ter Jun 12, 2012 19:35
Veja que os pontos P(x,y) do gráfico de uma função são determinados a partir dessa função.
Sendo assim, por exemplo, podemos nos perguntar se os pontos (3,6) e (4,8) pertencem ao gráfico da função f(x) = 3x - 4. Para isto, devemos substituir os valores de x de cada ponto e calcular o correspondente, isto é, f(x). Se f(x) for o valor y do ponto então este ponto pertence ao gráfico de f(x). Do contrário, não!
(3,6) => f(3) = 3.3 - 4 = 5. Como 5 é diferente de 6, este ponto nao pertence ao gráfico de f. ( Note que o ponto correspondente a x=3 é (3,5).)
(4,8) => f(4) = 3.4 - 4 = 8. Como 8 é igual a 8, este ponto pertence ao gráfico de f.
Agora, no seu exemplo, temos
f(x) = kx² + tx,
onde, imagino eu, que k e t sejam contantes.
Os pontos (-2,0) e (u,0) devem pertencer ao gráfico de f. Assim, temos de calcular qual valor u que satisfaz este enunciado. Procedendo da mesma forma que no exercício anterior,
(-2,0) => f(-2) = 4k -2t = 0 => 2k=t. ( eq.1)
(u,0) => f(u) = ku² - ut = 0 => u(uk - t) = 0 (eq. 2)
Veja, que da 2° equação, ja temos um valor possível para u: u=0. Outro valor possível é u = t/k. Este, da 1° equação, obtemos u=2, pois t/k = 2.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por joaofonseca » Ter Jun 12, 2012 20:16
Acho que essa demonstração tem uma incongruência:
Partimos do presoposto que k, t e u são constantes. Sobre elas não se sabe nada, mas o seu valor é fixo.
Quando se resolve a equação f(x)=0, utiliza-se a lei do anulamento do produto, colocando x em evidência. Por isso se obtem que

.
Repetir o mesmo procedimento para f(u)=0, não faz sentido porque
u é uma constante.
O raciocinio que levou a afirmar que

, a mim leva-me a pensar que u=0. Apesar de que com a insuficiente informação que é dada, não se pode afirmar com certeza qual o valor de u.
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função quadrática
por Ananda » Sex Mar 28, 2008 16:00
- 6 Respostas
- 9020 Exibições
- Última mensagem por admin

Sex Mar 28, 2008 21:25
Funções
-
- Função quadratica
por Aline » Qui Jun 18, 2009 14:22
- 2 Respostas
- 2528 Exibições
- Última mensagem por Cleyson007

Sex Jun 19, 2009 10:00
Funções
-
- Função Quadratica
por Aline » Qui Jun 18, 2009 14:37
- 1 Respostas
- 1935 Exibições
- Última mensagem por Marcampucio

Qui Jun 18, 2009 16:45
Funções
-
- Função Quadratica
por Aline » Sáb Jun 20, 2009 18:23
- 1 Respostas
- 2016 Exibições
- Última mensagem por Molina

Dom Jun 21, 2009 20:28
Funções
-
- Função Quadratica
por guijermous » Sáb Abr 10, 2010 10:02
- 4 Respostas
- 7897 Exibições
- Última mensagem por Molina

Sáb Abr 10, 2010 16:27
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.