• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matematica Financeira Calculo para divisao imobiliaria.

Matematica Financeira Calculo para divisao imobiliaria.

Mensagempor MOYA » Ter Jun 12, 2012 18:48

Olá,

Tenho uma duvida quanto a um problema de divisao de porcentagem quanto a um imovel sendo adquirido por duas pessoas, qual é a porcentagem a ser considerada por pessoa na seguinte situação:

Um imovel esta sendo adquirido por 2 pessoas juntas, comprador A + comprador B, o comprador A esta fazendo um aporte inicial superior ao comprador B, porem a maior parte do imovel esta sendo adquirida atraves de financiamento bancario, onde as duas partes vão pagar juntas o equivalente ao valor das parcelas, metade cada um.

Considerando que o acordo entre os compradores termine apos o financiamento, a porcentagem de quanto cabe a cada um é facil calcular, exemplo:
Valor do Imovel: R$ 400.000,00
Aporte inicial comprado A: R$ 180.000,00
Aporte inicial comprado B: R$ 11.000,00
Valor total financiado pelas duas partes R$ 209.000,00
Periodo do Financiamento: 30 anos
Supomos que o financiamento seja quitado, entendo:
Valor do imovel: 100%
% comprador A: 45% (aporte inicial) + metade do valor do financiamento 26,13% = 71,13%
% comprador B: 2,75% (aporte inicial) + metade do valor do financiamento 26,13% = 28,88%

Suponhamos agora que o acordo seja rompido apos 3 anos de financiamento, preciso saber que formula posso utilizar para calcular a porcetagem que cada comprador tera por direito apos esse periodo. pois se considerarmos a mesma formula acima considerada, o comprado A tera feito um investimento maior que o comprador B, porem o retorno apos esse periodo será menor do que o investido, ja o comprador B tera investido um valor pequeno porem o valor do imvel para esse será maior.

obrigado.
MOYA
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jun 12, 2012 18:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Negocios Internacionais
Andamento: formado

Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?