• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ângulos alfa e beta - razão

Ângulos alfa e beta - razão

Mensagempor PeterHiggs » Qui Jun 07, 2012 13:36

ABCD é um quadrado, DM = MC e AE = CE + CB. Calcule \frac{\beta}{\alpha}

1) ABCD é um quadrado ....png
1) ABCD é um quadrado ....png (6.3 KiB) Exibido 10603 vezes


Resposta: \frac{\beta}{\alpha} = \frac{2x}{x} = 2

Bom, tentei resolver de todas as formas possíveis, mas não consegui.

Ali abaixo está o quadrado, e a minha tentativa de resolução. Tentei chegar a um ponto em que isolasse alfa e beta na mesma variável, como está na resposta, mas não obtive resultado!

ABCD é um quadrado ....png
ABCD é um quadrado ....png (8.59 KiB) Exibido 10603 vezes


Alguém pode me ajudar? Obrigado
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Ângulos alfa e beta - razão

Mensagempor DanielFerreira » Dom Jun 10, 2012 18:07

IMG_0001.jpg

Confesso que não entendi por que x < 0, mas...

sen\beta = z ====> sen\beta = \frac{2}{5} ====> \beta = arcsen\frac{2}{5}

sen\theta = x + y ====> sen\theta = - \frac{2}{5} + \frac{3}{5} ====> \theta = arcsen\frac{1}{5}

\frac{\beta}{\theta} = \frac{arcsen \frac{2}{5}}{arcsen\frac{1}{5}}

\frac{\beta}{\theta} = \frac{2}{5}.\frac{5}{1}

\frac{\beta}{\theta} = 2
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Ângulos alfa e beta - razão

Mensagempor PeterHiggs » Dom Jun 10, 2012 19:39

Olá, muito obrigado pela ajuda e pelos cálculos na folha scanneada.

Eu ia te perguntar uma coisa, danjr5: aquela relação que você colocou:

\frac{\beta}{\theta} = \frac{arcsen\frac{2}{5}}{arcsen\frac{1}{5}}

\frac{\beta}{\theta} = \frac{2}{5}*\frac{5}{1} = 2

Ela é válida matematicamente?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Ângulos alfa e beta - razão

Mensagempor DanielFerreira » Dom Jun 10, 2012 20:39

PeterHiggs,
já que perguntou; acho que não. Fui tentado a fazer isso - coincidia com o gabarito.
Dedicarei uma parte do meu tempo amanhã afim de apresentar-lhe uma solução mais satisfatória. A propósito, desconsidere meu primeiro post .

Até breve!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Ângulos alfa e beta - razão

Mensagempor DanielFerreira » Seg Jun 11, 2012 23:57

E aí Peter, blz?!
Acho que agora foi! Rsrsrs

Considere:
ME = x
EC = y
CB = z

Do enunciado temos:
DM = x + y
AE = y + z

Considerando a figura digitalizada, do triângulo AE'E concluímos que:
z^2 + (2x + y)^2 = (y + z)^2

z^2 + 4x^2 + 4xy + y^2 = y^2 + 2yz + z^2

4xy + 4x^2 = 2yz

Substituindo z = 2x + 2y (quadrado)

4xy + 4x^2 = 2y(2x + 2y)

4xy + 4x^2 = 4xy + 4y^2

4x^2 = 4y^2

x = y

=> A abertura do ângulo \theta indica x + y, ou seja, 2x

=> A abertura do ângulo \beta indica z, ou seja, 4x

Daí,
\frac{\beta}{\theta} =

\frac{4x}{2x} =

2
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Ângulos alfa e beta - razão

Mensagempor PeterHiggs » Ter Jun 12, 2012 13:11

Muito obrigado pela resposta, danjr5 .
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59