por gabriel17carmo » Sex Jun 08, 2012 23:16
... formado pelos vetores:
V1 = (4, 2, -3)
V2 = (2, 1, -2)
V3 = (-2, -1, 0)
Olá, me deparei com esse exercício na minha apostila de gaal, porém não estou conseguindo resolver. Fiz a matriz com esses vetores e achei como solução {

}, assim sendo, a base seria o vetor (2,-3, 1) e a dimensão seria 1, creio eu.
Mas no livro a dimensão do subespaço aparece como 2.
Alguém me explica no que estou errando, por favor?
Muito Grato
-
gabriel17carmo
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Abr 02, 2012 23:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas de Informação
- Andamento: cursando
por MarceloFantini » Sáb Jun 09, 2012 19:27
Gabriel, antes de mais nada é necessário saber se o conjunto

é linearmente independente. Você verificou isso? Se sim, não há mais o que fazer. Se não, quantos sobram?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por gabriel17carmo » Sáb Jun 09, 2012 20:36
Verifiquei e vi que não é LI, pois tem duas linhas iguais e portanto o determinante é igual a 0.
Mas por que esse conjunto não pode ser LI? Achei que era a base que não poderia ser LI. :S
E não entendi quando você perguntou quantos sobraram.
Desculpe a ignorância.
-
gabriel17carmo
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Abr 02, 2012 23:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas de Informação
- Andamento: cursando
por gabriel17carmo » Sáb Jun 09, 2012 20:46
ahh acho que entendi. Esse conjunto de vetores v1, v2 e v3 seriam a base se fossem LI?
Aí eu vi que são LD, portanto um vetor é a combinação linear dos outros dois. Então eu posso pegar a base sendo o conjunto {v1, v2}, {v2, v3} ou até mesmo {v1, v3}?
Portanto se for qualquer uma dessas terá duas dimensões.
-
gabriel17carmo
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Abr 02, 2012 23:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas de Informação
- Andamento: cursando
por MarceloFantini » Sáb Jun 09, 2012 20:50
Sim, exatamente. Se o conjunto

fosse LI, eles seriam a base. Você pode pegar como base quaisquer dois vetores que sejam linearmente independentes, se os conjuntos que você disse satisfazerem isto então está feito.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por gabriel17carmo » Seg Jun 11, 2012 02:42
Entendi, Muito Obrigado, foi de grande ajuda pra mim!
-
gabriel17carmo
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Abr 02, 2012 23:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas de Informação
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Álgebra Linear]-Base e dimensão
por Ana_Rodrigues » Seg Mai 07, 2012 18:36
- 2 Respostas
- 2890 Exibições
- Última mensagem por Ana_Rodrigues

Ter Mai 08, 2012 23:12
Álgebra Linear
-
- algebra linear - base e dimensão do espaço de funçoes
por mou_duarte » Seg Mai 02, 2016 11:14
- 0 Respostas
- 1898 Exibições
- Última mensagem por mou_duarte

Seg Mai 02, 2016 11:14
Álgebra Linear
-
- Álgebra linear - Subespaço Gerado
por nietzsche » Sex Jan 06, 2012 19:48
- 2 Respostas
- 1788 Exibições
- Última mensagem por nietzsche

Ter Jan 10, 2012 17:16
Álgebra Linear
-
- [Álgebra Linear][Dúvida][Provar subespaço]
por Nicolas1Lane » Sex Set 12, 2014 16:45
- 1 Respostas
- 2013 Exibições
- Última mensagem por adauto martins

Qui Out 23, 2014 15:11
Álgebra Linear
-
- espaço linear -dimensão
por futuro fisico » Sáb Jul 02, 2011 17:23
- 3 Respostas
- 3974 Exibições
- Última mensagem por Renato_RJ

Dom Jul 03, 2011 17:13
Álgebra
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.