• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Eq Dif] Variação dos Parâmetros

[Eq Dif] Variação dos Parâmetros

Mensagempor Bruno G Carneiro » Qua Jun 06, 2012 16:20

Equações Diferenciais - Boyce e DiPrima
Capítulo 3.7 - Exercício 11

Encontre a solução geral. g(t) é uma função contínua arbitrária

y11 - 5y' + 6y = g(t)

Buscando as soluções linearmente independentes da equação homogênea associada, temos

y_1 = e^{3t}
y_2 = te^{2t}

W = y_1y''_2 - y''_1y_2 = -e^{5t}

Em seguida,

y_1g/w = -e^{8t}g
y_2g/w = -e^{7t}g

O próximo passo seria calcular a integral de \int y_1g/w e \int y_2g/w

Mas eu não sei o que fazer com essa função g que é indeterminada.

Como prosseguir?
Bruno G Carneiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mai 11, 2012 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Eq Dif] Variação dos Parâmetros

Mensagempor Bruno G Carneiro » Qui Jun 07, 2012 19:15

Tentei usar a fórmula
\int u dv = u v - \int v du

Para u=g(t), du=g'(t), dv=-e^{8t}, v = -\frac{1}{8}e^{8t}

Mas a integral \int v du me leva para outra integral com g(t) que é o meu problema inicial.
Bruno G Carneiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mai 11, 2012 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}