Olá, Pessoal! Gostaria de discutir com os colegas um problema que vem estampado em quase todos os bons livros de "Análise Combinatória", inclusive no lendário Victor Mirshawka.
Duas pessoas marcam um encontro em um determinado local. Combinam que ambos deverão chegar a este local entre 12 e 13h. Porém, quando o primeiro chegar ao local, irá esperar 10min pelo outro. Caso o outro não chegue ao local neste intervalo de tempo (10min), o primeiro a chegar vai embora, e eles não conseguem se encontrar. Qual a probabilidade do encontro ocorrer?
Afinal! Qual seria uma possível "solução combinatória" sem recorrer à região do quadrado entre as retas y=x+10 e y=x-10 e muito menos sem fazer uso de integral? E qual o motivo de não poder recorrer aos "Postulados de Poisson"? Será mesmo que não existe uma saída combinatória para um problema tão cobrado exatamente nos cápítulos combinatórios?
Abraços!