• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração de uma expressão aparentemente irracional

Fatoração de uma expressão aparentemente irracional

Mensagempor PeterHiggs » Qui Mai 31, 2012 10:15

Prove que \sqrt[3]{20+14\sqrt2} + \sqrt[3]{20-14\sqrt2} é um número racional.

Obs.: A expressão vale 4.



* Comecei, associando à expressão o valor x (Para que eu pudesse elevar ao cubo, fatorar, fazer todas as transformações, e depois voltar ao "ponto de partida", já que estou trabalhando com uma expressão, e não uma equação)

Então, elevei ao cubo:

x^3 = \sqrt[3]{(20+14\sqrt2)^3} + 3\sqrt[3]{8(20+14\sqrt2)} + 3\sqrt[3]{8(20-14\sqrt2)} + \sqrt[3]{(20-14\sqrt2)^3}

x^3 = 40 + 6(\sqrt[3]{20+\sqrt{392}}+\sqrt[3]{20-\sqrt{392}})

Bom, a partir daí, não consegui chegar a lugar algum. Alguém pode ajudar?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fatoração de uma expressão aparentemente irracional

Mensagempor Russman » Qui Mai 31, 2012 10:57

PeterHiggs escreveu:Prove que \sqrt[3]{20+14\sqrt2} + \sqrt[3]{20-14\sqrt2} é um número racional.

Obs.: A expressão vale 4.



* Comecei, associando à expressão o valor x (Para que eu pudesse elevar ao cubo, fatorar, fazer todas as transformações, e depois voltar ao "ponto de partida", já que estou trabalhando com uma expressão, e não uma equação)

Então, elevei ao cubo:

x^3 = \sqrt[3]{(20+14\sqrt2)^3} + 3\sqrt[3]{8(20+14\sqrt2)} + 3\sqrt[3]{8(20-14\sqrt2)} + \sqrt[3]{(20-14\sqrt2)^3}

x^3 = 40 + 6(\sqrt[3]{20+\sqrt{392}}+\sqrt[3]{20-\sqrt{392}})

Bom, a partir daí, não consegui chegar a lugar algum. Alguém pode ajudar?



Faça,

a = \sqrt[3]{20+14\sqrt2} , b= \sqrt[3]{20-14\sqrt2} .

Como,

{(a+b)}^{3} = {a}^{3}+{b}^{3}+3ab(a+b)

entao

{(a+b)}^{3} = 6(a+b)+40.

Chamando a+b = x você tem uma equação cúbica do tipo
{x}^{3}-6x-40=0

donde se vê que x=4 é solução!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Fatoração de uma expressão aparentemente irracional

Mensagempor PeterHiggs » Qui Mai 31, 2012 21:45

Obrigado pela resposta !
Simplesmente genial ! Valeu !!!! :y:
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?