por Larice Mourao » Qua Mai 30, 2012 12:08
Então , eu pesquisei no site , mas não encontrei essa questão que é da UFT , e eu vou prestar vestibular domingo (03/05) , se alguém puder me orientar até sexta - hehe - fico extremamente grata !
Uma empresa do ramo de confecções produz e
comercializa calças jeans. Se x representa a quantidade
produzida e comercializada (em milhares de unidades) e
l(x) = - x² + 48x - 10
representa o lucro (em milhares de reais) da empresa para
x unidades, então o lucro máximo que a empresa poderá
obter é:
Eu vi na internet uma resposta usando limite , eu acho, mas não sei o que é isso ..
então tentei substituir o '' l(x) '' por ''y'' aí isolei o Y e substituí no lugar do x , mas não ta dando certo , tentei fazer por Báskara , mas não é um trinômio quadrado perfeito .. o que eu devo fazer a nível de Ensino Médio ?
-
Larice Mourao
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mai 17, 2012 15:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Russman » Qua Mai 30, 2012 14:37
A nível de Ensino Médio, você deve perceber que a função

, a função Lucro, é de 2º grau. Logo trata-se de uma parábola. Para esta são conhecidas 2 fórmulasd que calculam seu "ponto de vértice" , isto é, calculam o seu valor máximo e para qual " x" este valor ocorre!
Seja a parábola

. O valor de x tal que ela se extremiza, isto é, atinge valor máximo ou mínimo é dado por

. Este valor é calculado por

.
Para o seu problema identificamos,

,

e

.
Portanto, o valor máximo desta função ( que será o Lucro máximo, pois y representa L, o lucro) é dado por

Assim, o lucro máximo será de 566 milhares de reais com a venda de 24 milhares de unidade2!
OBS:

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Larice Mourao » Qui Mai 31, 2012 23:34
aaaa .. legal , entendi , estou muito grata !!
nunca mais esqueço que aquele ''L(x)'' significa a função lucro !!! hehe

-
Larice Mourao
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mai 17, 2012 15:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação do 1º Grau - Como montar a equação
por macedo1967 » Sáb Out 07, 2017 12:53
- 1 Respostas
- 8037 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:17
Equações
-
- [Equação Modular] com equação de 2º grau
por paola-carneiro » Qui Abr 05, 2012 15:53
- 2 Respostas
- 3416 Exibições
- Última mensagem por paola-carneiro

Sex Abr 06, 2012 16:23
Funções
-
- [Função] isso é função do segundo grau?
por maulakalanata » Qua Mar 27, 2013 04:03
- 1 Respostas
- 2287 Exibições
- Última mensagem por timoteo

Qua Mar 27, 2013 10:51
Funções
-
- Equação do 1 Grau
por luanxd » Ter Jan 26, 2010 00:06
- 3 Respostas
- 5523 Exibições
- Última mensagem por Cleyson007

Qua Jan 27, 2010 20:40
Polinômios
-
- equação do 2º grau
por juniorthai » Seg Fev 08, 2010 12:05
- 2 Respostas
- 11755 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 06, 2010 20:48
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.