• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguem me aquida aqui com essa derivada por favor?

Alguem me aquida aqui com essa derivada por favor?

Mensagempor henr1ke001 » Seg Mai 28, 2012 12:01

Ola galera to com um trabalho de matematica para entregar mas estou enroscado em um problema, tentei, tentei mais nao consegui fazer.
alguem me da uma ajudinha ae? ^^



Uma das fórmulas para gerenciamento de almoxarifado diz que o custo médio semanal para você encomendar, pagar e armazenar uma mercadoria é A(q) = km/q + cm + hq/2 . onde q é a quantidade que você encomenda quando o estoque (de sapatos, computadores, resistores, antenas, seja o que for) está baixo, k é o custo para fazer o pedido (que é constante, não importando quanto você pede), c é o custo do item (uma constante), m é o número de itens vendidos em uma semana (uma constante) e h é o custo semanal de armazenagem de um item (uma constante que leva em conta coisas como o espaço que o item ocupa, energia elétrica, custo do seguro e da segurança). Seu trabalho, como almoxarife, é determinar a quantidade, , que minimizará . Qual é essa quantidade? (A solução desse problema é conhecida como fórmula do tamanho do lote de Wilson).

obrigado a quem conseguir me ajudar!!
henr1ke001
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 28, 2012 11:54
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas de informacao
Andamento: cursando

Re: Alguem me aquida aqui com essa derivada por favor?

Mensagempor Max Cohen » Seg Mai 28, 2012 15:20

[Otimização]Cara, é um problema de otimização, então basta você derivar esta função e iguala-la a 0.
Veja: A'(q)=-km/q^2 + h/2, então A(q)=0, então -km/q^2 + h/2 = 0, então km/q^2 = h/2, então q^2 = km/h/2, então q^2 = 2km/h, então q = +- raiz(2km/h), você deve tomar o valor positivo, já que você deseja minimizar, então q = raizquadrada(2km/h).
Max Cohen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Mai 23, 2012 18:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59