• Anúncio Global
    Respostas
    Exibições
    Última mensagem

É possível aplicar D' Hospital?

É possível aplicar D' Hospital?

Mensagempor clarivando » Qua Dez 24, 2008 19:11

Molina, para aplicar Hospital em \lim_{x\to0}\((senx)^x, {0^0}, fiz ln\lim_{x\to0}\((senx)^x = ln k e em seguida obtive ln k = \lim_{x\to0}\(ln(senx)^x = \lim_{x\to0}\frac{\frac{x}{x}\ln(senx)}{\frac{1}{x}} = \lim_{x\to0}\frac{\ln(senx)}{\frac{1}{x}} = \lim_{x\to0}\frac{-\infty}{\infty}, ou seja, não consegui encontrar \frac{\infty}{\infty} e nem \frac{0}{0}, mas afinal, de alguma maneira, será que é possível aplicar D' Hospital nesse limite? Ah, e obrigado por me esclarecer que no limite ln0 tende a menos infinito!
clarivando
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Dez 21, 2008 20:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: É possível aplicar D' Hospital?

Mensagempor Molina » Qua Dez 24, 2008 21:12

Boa noite, Clarivando.

Primeiramente, de nada pela ajuda anterior. Sempre é bom analisar graficamente um limite.

Agora vamos a esta dúvida.
Antes de tudo, quando você D' Hospital nao queria dizer L'Hopital? O nome deve-se a esse matemático aqui: http://pt.wikipedia.org/wiki/Guillaume_ ... C3%B4pital que publicou a regra que levou seu nome.

Neste caso acho que nao dá pra usar a regra, pelo menos nao entendi quando voce foi de \lim_{x\to0}\((senx)^x para ln\lim_{x\to0}\((senx)^x Se possível me explique melhor.

Já tentou usar a regra da cadeia?

Abraços e bom estudo!
Ah, e um feliz natal.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: É possível aplicar D' Hospital?

Mensagempor Guill » Dom Mai 27, 2012 16:47

Não é muito elegante aplicar o logaritmo neperiano no limite. Deve ser feito assim:

Seja y uma função tal que:

y = (senx)^x


Podemos fazer:

ln(y) = ln[(senx)^x]


Logo:

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}ln[(senx)^x]

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}\frac{ln(senx)}{\frac{1}{x}}


Esse é um caso onde se pode aplicar o Teorema de L'Hospital:

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}\frac{\frac{cosx}{senx}}{\frac{-1}{x^2}}

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}\frac{-x^2.cosx}{senx}


Podemos usar novamente o Teorema:

\lim_{x\rightarrow 0} ln(y) = \lim_{x\rightarrow 0}\frac{-2x.cosx - x^2.senx}{cosx} = 0



Uma vez que, quando ln(y) \rightarrow 0 \Rightarrow y \rightarrow 1:

\lim_{x\rightarrow 0} (senx)^x = 1
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: É possível aplicar D' Hospital?

Mensagempor Guill » Dom Mai 27, 2012 16:52

Só para esclarecer, não importa o sinal, uma vez que:

\frac{-\infty}{\infty}=\frac{\frac{1}{\infty}}{\frac{1}{-\infty}} = \frac{0}{-0}=\frac{0}{0}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}