por Russman » Qua Mai 23, 2012 18:49
Eu gostaria de saber se vocês concordam ou não com o seguinte:
Eu quero calcular a integral de uma função do tipo

, ou seja, uma função multiplicada por um diferencial.
Se

, então

.
Posso pensar assim? Tenho motivos para achar que sim! Mas...
Obrigado.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Russman » Qui Mai 24, 2012 10:41
UP!
Ninguem? ;(
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por fraol » Sáb Mai 26, 2012 00:40
Interessante!
Meu palpite ... é que é possível, pensar assim.
Embora não tenha estudado isso diretamente, me parece mais uma questão de notação pois acabaríamos em uma integral iterada, não?
Aliás, a qual assunto ou aplicação você está relacionando isso?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por nietzsche » Sáb Mai 26, 2012 17:14
Quando você escreve

, está querendo dizer o que com o lado direito?
Normalmente, a notação

indica que sua variável de integração

está variando entre

e

.
Então se você multiplica por um diferencial dt,

você está multiplicando pelo que? O diferencial dt indica o que? Quais motivos que te levam a pensar que pode multplicar por dt? Eu creio que não pode.
Existem várias formas de se abordar integral:
http://en.wikipedia.org/wiki/Integral
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Dom Mai 27, 2012 15:36
Não tenho domínio suficiente sobre o assunto, mas praticamente certeza que esta "operação" não existe. Um diferencial é um elemento do espaço dos tensores alternantes com a operação produto exterior. Isto significa que é anticomutativo, isto é,

(como o produto vetorial). Quando são iguais, isto é nulo. Mas, mesmo para fazer isto, é necessário que você possa definir o produto exterior. A integral é um número, não se "aplica" um diferencial dentro dela.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Russman » Dom Mai 27, 2012 19:01
Obrigado, pessoal! ;D
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- diferencial e integral
por edilaine33 » Seg Dez 02, 2013 20:08
- 1 Respostas
- 1317 Exibições
- Última mensagem por Bravim

Seg Dez 02, 2013 20:13
Cálculo: Limites, Derivadas e Integrais
-
- diferencial e integral
por edilaine33 » Seg Dez 02, 2013 20:20
- 0 Respostas
- 743 Exibições
- Última mensagem por edilaine33

Seg Dez 02, 2013 20:20
Cálculo: Limites, Derivadas e Integrais
-
- cálculo diferencial e integral
por Neperiano » Qua Out 08, 2008 22:20
- 4 Respostas
- 6879 Exibições
- Última mensagem por admin

Ter Out 14, 2008 16:41
Cálculo: Limites, Derivadas e Integrais
-
- calculo integral e diferencial
por edilainemorais » Qui Fev 20, 2014 18:15
- 0 Respostas
- 1729 Exibições
- Última mensagem por edilainemorais

Qui Fev 20, 2014 18:15
Cálculo: Limites, Derivadas e Integrais
-
- cálculo diferencial e integral II
por Luiz vicente » Seg Mar 06, 2017 13:30
- 0 Respostas
- 6470 Exibições
- Última mensagem por Luiz vicente

Seg Mar 06, 2017 13:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.