• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral x diferencial!

Integral x diferencial!

Mensagempor Russman » Qua Mai 23, 2012 18:49

Eu gostaria de saber se vocês concordam ou não com o seguinte:

Eu quero calcular a integral de uma função do tipo f(t)dt, ou seja, uma função multiplicada por um diferencial.

Se I(t) = \int_{}^{}f(t) dt, então

\int_{}^{}f(t)dt dt = I(t)dt.


Posso pensar assim? Tenho motivos para achar que sim! Mas...

Obrigado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral x diferencial!

Mensagempor Russman » Qui Mai 24, 2012 10:41

UP!

Ninguem? ;(
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral x diferencial!

Mensagempor fraol » Sáb Mai 26, 2012 00:40

Interessante!

Meu palpite ... é que é possível, pensar assim.
Embora não tenha estudado isso diretamente, me parece mais uma questão de notação pois acabaríamos em uma integral iterada, não?

Aliás, a qual assunto ou aplicação você está relacionando isso?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Integral x diferencial!

Mensagempor nietzsche » Sáb Mai 26, 2012 17:14

Quando você escreve I(t) = \int_{}^{}f(t) dt, está querendo dizer o que com o lado direito?

Normalmente, a notação \int_{a}^{b}f(t) dt indica que sua variável de integração t está variando entre a e b.
Então se você multiplica por um diferencial dt, \int_{}^{}f(t)dt dt = I(t)dt você está multiplicando pelo que? O diferencial dt indica o que? Quais motivos que te levam a pensar que pode multplicar por dt? Eu creio que não pode.

Existem várias formas de se abordar integral: http://en.wikipedia.org/wiki/Integral
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral x diferencial!

Mensagempor MarceloFantini » Dom Mai 27, 2012 15:36

Não tenho domínio suficiente sobre o assunto, mas praticamente certeza que esta "operação" não existe. Um diferencial é um elemento do espaço dos tensores alternantes com a operação produto exterior. Isto significa que é anticomutativo, isto é, a \wedge b = - b \wedge a (como o produto vetorial). Quando são iguais, isto é nulo. Mas, mesmo para fazer isto, é necessário que você possa definir o produto exterior. A integral é um número, não se "aplica" um diferencial dentro dela.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral x diferencial!

Mensagempor Russman » Dom Mai 27, 2012 19:01

Obrigado, pessoal! ;D
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}