Boa noite a todos, estou estudando integral dupla e tripla na disciplina de calculo 3. Resolvendo exercícios fiquei com dúvidas na resolução da seguinte questão, na verdade estou sem ideia de como resolver. Tem outras letras o exercícios, mas se eu entender esse mais simples os outros eu devo conseguir fazer.
Determine a imagem do conjunto S sob a transformação dada:
a) S = {(u,v); 0 < u < 3, 0 < v < 2}; x = 2u + 3v, y = u - v
obs: O que eu já fiz:
u = x/5 + 3y/5
v = x/5 - 2y/5
Sei que a imagem de S é a região R no plano 'xy'. Então preciso encontrar uma forma de esboçar minha região S no plano xy.
De ante-mão já agradeço aqueles que tentarem ajudar.


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)