• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Dupla] Imagem do conjunto S - Mudança de Variável

[Integral Dupla] Imagem do conjunto S - Mudança de Variável

Mensagempor neymeirelles » Qua Mai 23, 2012 21:14

Boa noite a todos, estou estudando integral dupla e tripla na disciplina de calculo 3. Resolvendo exercícios fiquei com dúvidas na resolução da seguinte questão, na verdade estou sem ideia de como resolver. Tem outras letras o exercícios, mas se eu entender esse mais simples os outros eu devo conseguir fazer.

Determine a imagem do conjunto S sob a transformação dada:
a) S = {(u,v); 0 < u < 3, 0 < v < 2}; x = 2u + 3v, y = u - v


obs: O que eu já fiz:
u = x/5 + 3y/5
v = x/5 - 2y/5
Sei que a imagem de S é a região R no plano 'xy'. Então preciso encontrar uma forma de esboçar minha região S no plano xy.

De ante-mão já agradeço aqueles que tentarem ajudar.
neymeirelles
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mai 23, 2012 18:35
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando

Re: [Integral Dupla] Imagem do conjunto S - Mudança de Variá

Mensagempor LuizAquino » Qui Mai 24, 2012 19:02

neymeirelles escreveu:Boa noite a todos, estou estudando integral dupla e tripla na disciplina de calculo 3. Resolvendo exercícios fiquei com dúvidas na resolução da seguinte questão, na verdade estou sem ideia de como resolver. Tem outras letras o exercícios, mas se eu entender esse mais simples os outros eu devo conseguir fazer.

Determine a imagem do conjunto S sob a transformação dada:
a) S = {(u,v); 0 < u < 3, 0 < v < 2}; x = 2u + 3v, y = u - v


obs: O que eu já fiz:
u = x/5 + 3y/5
v = x/5 - 2y/5

Sei que a imagem de S é a região R no plano 'xy'. Então preciso encontrar uma forma de esboçar minha região S no plano xy.


Agora, como você já sabe que 0 < u < 3 e 0 < v < 2, poderá dizer que:
0 < x/5 + 3y/5 < 3
0 < x/5 - 2y/5 < 2

Sendo assim, a região desejada é determinada pelas inequações:
x/5 + 3y/5 > 0
x/5 + 3y/5 < 3
x/5 - 2y/5 > 0
x/5 - 2y/5 > 2

Para concluir, basta fazer o esboço da região determinada por essas inequações.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Integral Dupla] Imagem do conjunto S - Mudança de Variá

Mensagempor neymeirelles » Sex Mai 25, 2012 12:18

Muito obrigado, era o que estava faltando. Consegui resolver essa e as outras. :y:

LuizAquino escreveu:
neymeirelles escreveu:Boa noite a todos, estou estudando integral dupla e tripla na disciplina de calculo 3. Resolvendo exercícios fiquei com dúvidas na resolução da seguinte questão, na verdade estou sem ideia de como resolver. Tem outras letras o exercícios, mas se eu entender esse mais simples os outros eu devo conseguir fazer.

Determine a imagem do conjunto S sob a transformação dada:
a) S = {(u,v); 0 < u < 3, 0 < v < 2}; x = 2u + 3v, y = u - v


obs: O que eu já fiz:
u = x/5 + 3y/5
v = x/5 - 2y/5

Sei que a imagem de S é a região R no plano 'xy'. Então preciso encontrar uma forma de esboçar minha região S no plano xy.


Agora, como você já sabe que 0 < u < 3 e 0 < v < 2, poderá dizer que:
0 < x/5 + 3y/5 < 3
0 < x/5 - 2y/5 < 2

Sendo assim, a região desejada é determinada pelas inequações:
x/5 + 3y/5 > 0
x/5 + 3y/5 < 3
x/5 - 2y/5 > 0
x/5 - 2y/5 > 2

Para concluir, basta fazer o esboço da região determinada por essas inequações.
neymeirelles
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mai 23, 2012 18:35
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59