• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda Derivada.

Ajuda Derivada.

Mensagempor jhonniewalk » Qui Mai 24, 2012 16:49

Olá a todos,

Estou com algumas dúvidas em algumas derivadas, não tem haver com regras de derivação mas sim com simplificações com radicais e exponenciais.

Um dos exercícios é este: f(x)= \sqrt[]{\frac{3}{{x}^{5}}}

A resolução do exercício é: f(x)=\frac{-5\sqrt[]{3}}{2\sqrt[]{{x}^{7}}}

Os meus cálculos:

f(x)= {\left(\frac{3}{{x}^{5}} \right)}^{\frac{1}{2}} = \frac{1}{2}{\left(\frac{3}{{x}^{5}} \right)}^{\frac{-1}{2}}*\frac{-15}{{x}^{6}} = \frac{1}{2\sqrt[]{}\frac{3}{{x}^{5}}}*\frac{-15}{{x}^{6}} = \frac{-15}{2 {x}^{6}\sqrt[]{}\frac{3}{{x}^{5}}}

Não sei simplificar mais do que isto :oops:

Onde posso ler sobre simplificações?

Obrigado
jhonniewalk
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 24, 2012 15:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecanica
Andamento: cursando

Re: Ajuda Derivada.

Mensagempor DanielFerreira » Qui Mai 24, 2012 19:44

Jhonniewalk,
seja bem vindo!

Tente fazer o seguinte:

f(x) = \sqrt[]{\frac{3}{x^5}}

f(x) = \frac{\sqrt[]{3}}{\sqrt[]{x^5}}

f(x) = \frac{\sqrt[]{3}}{x^{\frac{5}{2}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Ajuda Derivada.

Mensagempor jhonniewalk » Qui Mai 24, 2012 20:32

Obrigado pela ajuda. Estou a tentar mas não vai lá.

f(x)=\frac{\sqrt[]{3}}{{x}^{\frac{5}{2}}} = \frac{\left(\sqrt[]{3} \right)\left({x}^{\frac{5}{2}}\right)-\left(\sqrt[]{3}  \right)\left({x}^{\frac{5}{2}} \right)}{\left( {{x}^{\frac{5}{2}}} \right)^{2}} = -\frac{\sqrt[]{3}*\frac{5}{2}{x}^{\frac{3}{2}}}{{x}^{\frac{10}{2}}} = \frac{\sqrt[]{3}*\frac{5}{2}\sqrt[]{{x}^{3}}}{{x}^{5}}

Não estou a conseguir perceber o que me falta.
jhonniewalk
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 24, 2012 15:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecanica
Andamento: cursando

Re: Ajuda Derivada.

Mensagempor DanielFerreira » Qui Mai 24, 2012 21:24

Derivada do quociente:
Seja y = \frac{g(x)}{h(x)}

então,
f'(x) = \frac{g'(x).h(x) - g(x).h'(x)}{[h(x)]^2}


g(x) = \sqrt[]{3} =====> g'(x) = 0

h(x) = x^{\frac{5}{2}} =====> h'(x) = \frac{5}{2}.x^{\frac{3}{2}}

Logo,
f'(x) = \frac{0 . x^{\frac{5}{2}} - \sqrt[]{3}.\frac{5}{2}.x^{\frac{3}{2}}}{(x^{\frac{5}{2}})^2}


f'(x) = - \frac{\sqrt[]{3}.\frac{5}{2}.x^{\frac{3}{2}}}{x^5}


f'(x) = - \sqrt[]{3} . \frac{5}{2} . x^{- \frac{7}{2}}


f'(x) = \frac{- 5\sqrt[]{3}}{2}. \frac{1}{x^{\frac{7}{2}}}


f'(x) = \frac{- 5\sqrt[]{3}}{2\sqrt[]{x^7}}}

Espero ter ajudado!

Qualquer dúvida, retorne!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Ajuda Derivada.

Mensagempor jhonniewalk » Seg Mai 28, 2012 21:01

Obrigado,

Ajudou bastante :)

Mas seria mais fácil se tivesse convertido para a forma equivalente: \sqrt[]{3} * {x}^{-\frac{5}{2}}

Depois era só aplicar a regra do expoente.

Mais uma vez obrigado.
jhonniewalk
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 24, 2012 15:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecanica
Andamento: cursando

Re: Ajuda Derivada.

Mensagempor DanielFerreira » Qui Mai 31, 2012 22:26

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?