• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com Exponencial

Limite com Exponencial

Mensagempor Thyago Quimica » Qui Mai 24, 2012 17:44

1) \lim_{x\rightarrow+\infty}\left[{2}^{x}-{3}^{x} \right]

2) \lim_{x\rightarrow+\infty}\frac{1-{2}^{x}}{1-{3}^{x}}

tendei fazer pelas propriedades mais o meu resultado nao bate, que deveria ser -\infty e 0
Thyago Quimica
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 05, 2012 17:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Limite com Exponencial

Mensagempor LuizAquino » Qui Mai 24, 2012 22:03

Thyago Quimica escreveu:tendei fazer pelas propriedades mais o meu resultado nao bate, que deveria ser -\infty e 0


Thyago Quimica escreveu:1) \lim_{x\rightarrow+\infty}\left[{2}^{x}-{3}^{x} \right]


Colocando 2^x em evidência, note que:

\lim_{x\to +\infty} {2}^{x}-{3}^{x} = \lim_{x\to +\infty} 2^x\left(1 - \frac{3^x}{2^x}\right)

= \lim_{x\to +\infty} 2^x\left[1 - \left(\frac{3}{2}\right)^x\right]

= (+\infty)\cdot (1 - \infty)

= (+\infty)\cdot (- \infty)

= -\infty

Thyago Quimica escreveu:2) \lim_{x\rightarrow+\infty}\frac{1-{2}^{x}}{1-{3}^{x}}


Dividindo o numerador e o denominador por 2^x , note que:

\lim_{x\to+\infty}\frac{1-{2}^{x}}{1-{3}^{x}} = \lim_{x\to+\infty}\frac{\frac{1}{2^x} - 1}{\frac{1}{2^x} - \frac{3^{x}}{2^x}}

= \lim_{x\to+\infty}\frac{\frac{1}{2^x} - 1}{\frac{1}{2^x} - \left(\frac{3}{2}\right)^x}

Agora note que:

\lim_{x\to+\infty} \frac{1}{2^x} - 1 =  0 - 1 = -1

\lim_{x\to+\infty} \frac{1}{2^x} - \left(\frac{3}{2}\right)^x =  0 - \infty = -\infty

Portanto, temos que:

\lim_{x\to+\infty}\frac{\frac{1}{2^x} - 1}{\frac{1}{2^x} - \left(\frac{3}{2}\right)^x} = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.