• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Idades de três irmãos.

Idades de três irmãos.

Mensagempor Lidia Barros » Qua Jul 01, 2009 11:13

Bom dia!
Tentei fazer o problema abaixo de acordo com a fórmula An=A1.q^n-1, mas não consigo solucioná-lo. Coloquei a ordem para representar a idade dos irmãos: P.G. (x,y,z), depois tentei criar uma espécie de sistema do tipo: x.y.z=64, acrescentando que x+y=20, mas não consigo visualizar mais nada. Por favor, me ajudem. Segue o problema abaixo:

As idades de três irmãos são números inteiros que estão em P.G. Se o produto dessas idades é 64 e a soma das idades dos mais velhos é 20, quantos anos tem cada um dos irmãos?

Obrigada!
Lidia Barros
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jul 01, 2009 10:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Letras
Andamento: formado

Re: Idades de três irmãos.

Mensagempor Cleyson007 » Qua Jul 01, 2009 16:13

Boa tarde Lidia Barros!

Primeiramente, boas-vindas!

O problema consiste na montagem das equações para achar as três idades.

Vamos lá --> (x,y,z)

1ª equação: \frac{y}{x}=\frac{z}{y} (Razão da P.G)

2ª equação: xyz=64 (Produto das raízes)

3ª equação: y+z=20 (Soma das idades dos filhos mais velhos)

Agora é só resolver o sistema de equções :-O

Comente qualquer dúvida :y:

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Idades de três irmãos.

Mensagempor DanielFerreira » Sex Jul 24, 2009 11:47

Lidia Barros escreveu:Tentei fazer o problema abaixo de acordo com a fórmula An=A1.q^n-1, mas não consigo solucioná-lo. Coloquei a ordem para representar a idade dos irmãos: P.G. (x,y,z), depois tentei criar uma espécie de sistema do tipo: x.y.z=64, acrescentando que x+y=20, mas não consigo visualizar mais nada. Por favor, me ajudem. Segue o problema abaixo:

Como vc usou a sequência (x,y,z), tem-se a idade dos irmãos mais velhos "y" e "z"
y + z = 20
xyz = 64

Como estão em P.G, vale a definição
\frac{y}{x} = \frac{z}{y}

mutiplicando cruzado...
xz = y²

Sabemos que
xyz = 64

então
y * y² = 64
y³ = 64
y³ = 4³
y = 4

Lembrando que
y + z = 20
4 + z = 20
z = 16

x * y * z = 64
x * 4 * 16 = 64
64x = 64
x = 1

x = 1 ano
y = 4 anos
z = 16 anos
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?