por Pri Ferreira » Seg Mai 21, 2012 22:46
Considere a seguinte função:

. Sendo A a soma de suas raízes reais multiplicada pelo valor
da ordenada no ponto em que a parábola toca o eixo y e B a razão entre o valor mínimo e o ponto de mínimo
da função, pode-se afirmar que A+B é:
A) 0 B) 29,9 C) 30 D) 30,1 E) N.R.A.
Não entendi!!Ajuda por favor!!!
-
Pri Ferreira
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Qua Out 19, 2011 20:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
por emsbp » Ter Mai 22, 2012 09:43
Bom dia.
Segundo a minha interpretação do enunciado, primeiramente terás de achar as raízes da parábola. Ou seja, achar os zeros: f(x)=0.
Designemos por x1 e x2 as raízes encontradas.
De seguida, tens de encontrar a ordenada no ponto em que a parábola toca o eixo Oy, ou seja, f(0), pois quando a função intersecta o eixo oy, o x tem de ser obrigatoriamente igual a 0.
Sendo assim,

.
Quanto ao valor de B, tens de determinar o valor mínimo e o minimizante(abcissa do mínimo). Para tal, poderás utilizar a derivada da função f.
Como pede a razão entre o mínimo e o minimizante, B=

.
Depois é só somar A com B.
Espero ter ajudado.
Obrigado!
-
emsbp
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Sex Mar 09, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Informática
- Andamento: formado
por Pri Ferreira » Ter Mai 22, 2012 21:47
Obrigada pela ajuda.
Eu fiz e encontrei como resposta 30,625, não está entre as opções, por isso pedi ajuda...
A resposta é do gabarito é 29,9.
-
Pri Ferreira
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Qua Out 19, 2011 20:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão de Máximo e Mínimo Global - Calculo I
por Mai96 » Qua Jul 08, 2015 22:12
- 2 Respostas
- 1612 Exibições
- Última mensagem por adauto martins

Qui Jul 16, 2015 18:39
Cálculo: Limites, Derivadas e Integrais
-
- Máximo e mínimo
por thadeu » Qua Nov 18, 2009 13:47
- 1 Respostas
- 4001 Exibições
- Última mensagem por Elcioschin

Qua Nov 18, 2009 17:50
Trigonometria
-
- Valor mínimo
por FilipeCaceres » Qui Mai 26, 2011 19:53
- 13 Respostas
- 7907 Exibições
- Última mensagem por demolot

Sex Mai 27, 2011 19:31
Funções
-
- [Maximo e Minimo]
por Scheu » Sex Mar 16, 2012 01:23
- 1 Respostas
- 2283 Exibições
- Última mensagem por MarceloFantini

Sex Mar 16, 2012 03:14
Cálculo: Limites, Derivadas e Integrais
-
- [Máximo & Minimo]
por allakyhero » Sáb Jun 30, 2012 12:41
- 6 Respostas
- 4593 Exibições
- Última mensagem por allakyhero

Dom Jul 01, 2012 11:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.