por gabrielnandi » Ter Mai 15, 2012 22:45
Amigos...gostaria da ajuda de voces
mostre se é divergente ou convergente!

o calculo é de suma importancia.. pois nao estou conseguindo desenvolver.. caso complique para mostrar o calculo.. o que puder detalhar.. eu fico muito grato
abraço a todos
-
gabrielnandi
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Mai 15, 2011 18:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eletronica
- Andamento: cursando
por LuizAquino » Sex Mai 18, 2012 17:43
gabrielnandi escreveu:Amigos...gostaria da ajuda de voces
mostre se é divergente ou convergente!

o calculo é de suma importancia.. pois nao estou conseguindo desenvolver.. caso complique para mostrar o calculo.. o que puder detalhar.. eu fico muito grato
Para estudar a resolução da integral, eu gostaria de lhe dar uma dica. Você pode usar um programa para isso! Por exemplo, o
SAGE, o Mathematica, o Maple, etc.
Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do
SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a resolução da integral indefinida associada a esse problema.
- Acesse a página: http://www.wolframalpha.com/
- No campo de entrada, digite:
- Código: Selecionar todos
integrate 1/((x-2)^(2/3)) dx
- Clique no botão de igual ao lado do campo de entrada.
- Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
- Pronto! Agora basta estudar a resolução.
Após seguir esses passos, você verá que:
![\int \frac{1}{(x-2)^\frac{2}{3}} \, dx = 3\sqrt[3]{x - 2} + c \int \frac{1}{(x-2)^\frac{2}{3}} \, dx = 3\sqrt[3]{x - 2} + c](/latexrender/pictures/69227e753f43cb5827f9affe0b1dc09b.png)
Agora para calcular a integral imprópria desejada, precisamos separar o intervalo [1, 4] em dois: [1, 2] e [2, 4]. Temos então que:


![= \lim_{r\to 2^-} \left[3\sqrt[3]{x - 2}\right]_1^r + \lim_{r\to 2^+} \left[3\sqrt[3]{x - 2}\right]_r^4 = \lim_{r\to 2^-} \left[3\sqrt[3]{x - 2}\right]_1^r + \lim_{r\to 2^+} \left[3\sqrt[3]{x - 2}\right]_r^4](/latexrender/pictures/e1c97071355ffc2a5f7e22f4cf7e8905.png)
![= \lim_{r\to 2^-} \left[3\sqrt[3]{r - 2} - 3\sqrt[3]{1 - 2}\right] + \lim_{r\to 2^+} \left[3\sqrt[3]{4 - 2} - 3\sqrt[3]{r - 2}\right] = \lim_{r\to 2^-} \left[3\sqrt[3]{r - 2} - 3\sqrt[3]{1 - 2}\right] + \lim_{r\to 2^+} \left[3\sqrt[3]{4 - 2} - 3\sqrt[3]{r - 2}\right]](/latexrender/pictures/a8e1581ac51dc06e5b94615d57f976a9.png)
![= \lim_{r\to 2^-} \left[3\sqrt[3]{r - 2} + 3\right] + \lim_{r\to 2^+} \left[3\sqrt[3]{2} - 3\sqrt[3]{r - 2}\right] = \lim_{r\to 2^-} \left[3\sqrt[3]{r - 2} + 3\right] + \lim_{r\to 2^+} \left[3\sqrt[3]{2} - 3\sqrt[3]{r - 2}\right]](/latexrender/pictures/0110a5df603af86c09a094d373d94338.png)
![= 3 + 3\sqrt[3]{2} = 3 + 3\sqrt[3]{2}](/latexrender/pictures/80829112343e0197ce9a94493df70d80.png)
Portanto, temos que a integral imprópria indicada é convergente.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Divergente ou convergente
por aline_n » Ter Jul 12, 2011 19:37
- 3 Respostas
- 2840 Exibições
- Última mensagem por LuizAquino

Qua Jul 13, 2011 10:20
Cálculo: Limites, Derivadas e Integrais
-
- Convergente ou Divergente?
por Cleyson007 » Qua Jul 13, 2011 21:29
- 2 Respostas
- 2997 Exibições
- Última mensagem por MarceloFantini

Qui Jul 14, 2011 07:56
Cálculo: Limites, Derivadas e Integrais
-
- [Séries] Série convergente ou divergente?
por RafaelPereira » Ter Jun 18, 2013 13:31
- 2 Respostas
- 2246 Exibições
- Última mensagem por RafaelPereira

Ter Jun 18, 2013 17:49
Sequências
-
- [AJUDA] Integral convergente
por gabrielnandi » Ter Mai 15, 2012 22:39
- 5 Respostas
- 3430 Exibições
- Última mensagem por gabrielnandi

Ter Mai 22, 2012 12:56
Cálculo: Limites, Derivadas e Integrais
-
- Rotacional e Divergente
por thiagodr » Sáb Abr 07, 2012 02:34
- 2 Respostas
- 1630 Exibições
- Última mensagem por thiagodr

Sáb Abr 07, 2012 16:27
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.