por gabriel feron » Seg Mai 14, 2012 16:21
Boa tarde, gostaria de tirar uma duvida sobre a questao:
![\lim_{x->4}\frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}} \lim_{x->4}\frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}}](/latexrender/pictures/fae81ebb31b82422217342bf0d9a1daf.png)
Nao consigo chegar ao resultado que é
![\frac{2\sqrt[2]{2}}{3} \frac{2\sqrt[2]{2}}{3}](/latexrender/pictures/0917dd4a0286f560a120a1e85caf2d8c.png)
, estou precisando de ajuda para desenvolver a questao, fiz 6 listas de exercicios e só nao consegui chegar ao resultado nessa questão por algum motivo que ainda estou em duvida :S, mas acredito que eu tenha errado na racionalizacao.
Att Gabriel Terra Feron
-
gabriel feron
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Seg Abr 16, 2012 03:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Hídrica
- Andamento: cursando
por LuizAquino » Seg Mai 14, 2012 17:54
gabriel feron escreveu:Boa tarde, gostaria de tirar uma duvida sobre a questao:
![\lim_{x->4}\frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}} \lim_{x->4}\frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}}](/latexrender/pictures/fae81ebb31b82422217342bf0d9a1daf.png)
Nao consigo chegar ao resultado que é
![\frac{2\sqrt[2]{2}}{3} \frac{2\sqrt[2]{2}}{3}](/latexrender/pictures/0917dd4a0286f560a120a1e85caf2d8c.png)
, estou precisando de ajuda para desenvolver a questao, fiz 6 listas de exercicios e só nao consegui chegar ao resultado nessa questão por algum motivo que ainda estou em duvida :S, mas acredito que eu tenha errado na racionalizacao.
Por favor, envie a sua tentativa para que possamos corrigi-la.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por gabriel feron » Seg Mai 14, 2012 18:29
![\frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}} vezes \frac{\sqrt[2]{x-2}+\sqrt[2]{2}}{\sqrt[2]{x-2}+\sqrt[2]{2}} = \frac{2x+1-6(\sqrt[2]{2x-1})+9}{x-4}=\frac{2x+10-6^\sqrt[2]{2x-1}}{x-4} \frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}} vezes \frac{\sqrt[2]{x-2}+\sqrt[2]{2}}{\sqrt[2]{x-2}+\sqrt[2]{2}} = \frac{2x+1-6(\sqrt[2]{2x-1})+9}{x-4}=\frac{2x+10-6^\sqrt[2]{2x-1}}{x-4}](/latexrender/pictures/d6eede2b87e672066ee06d9368f7b7cb.png)
e agora???
-
gabriel feron
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Seg Abr 16, 2012 03:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Hídrica
- Andamento: cursando
por gabriel feron » Seg Mai 14, 2012 19:05
Consegui aqui!!!!

Obrigado!!!
-
gabriel feron
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Seg Abr 16, 2012 03:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Hídrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Racionalização
por nathyn » Sex Fev 10, 2012 15:21
- 2 Respostas
- 1479 Exibições
- Última mensagem por nathyn

Seg Fev 13, 2012 12:28
Álgebra Elementar
-
- Racionalização
por Rafael16 » Dom Jan 13, 2013 14:25
- 3 Respostas
- 1734 Exibições
- Última mensagem por Rafael16

Dom Jan 13, 2013 18:41
Aritmética
-
- Racionalização
por aleson94 » Sex Mai 16, 2014 21:57
- 1 Respostas
- 1350 Exibições
- Última mensagem por Russman

Sex Mai 16, 2014 22:54
Álgebra Elementar
-
- Racionalizaçao
por Gustavo00 » Ter Mai 27, 2014 14:09
- 0 Respostas
- 1106 Exibições
- Última mensagem por Gustavo00

Ter Mai 27, 2014 14:09
Aritmética
-
- Racionalização
por Cristina Lins » Qua Abr 05, 2017 16:52
- 0 Respostas
- 1218 Exibições
- Última mensagem por Cristina Lins

Qua Abr 05, 2017 16:52
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.