• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Calculo 1] Esboço de curvas

[Calculo 1] Esboço de curvas

Mensagempor rafaelbr91 » Sáb Mai 12, 2012 19:32

Bem, eu queria saber como vou fazer o esboço gráfico da função f(x)= x³-2x+3x , o problema consiste no momento em que vou achar o ponto crítico da função, pois as raízes de f '(x), que corresponde à, 3x²-4x+3, são raízes complexas, dai eu n sei como representálas no gráfico( a dúvida é em relação a complexos então..), as raízes são : x' = 0,66 + 0,74.i e x" = 0,66 - 0,74.i Como represento elas graficamente? Agradecido.
rafaelbr91
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mar 27, 2012 17:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Calculo 1] Esboço de curvas

Mensagempor LuizAquino » Seg Mai 14, 2012 09:18

rafaelbr91 escreveu:Bem, eu queria saber como vou fazer o esboço gráfico da função f(x)= x³-2x+3x , o problema consiste no momento em que vou achar o ponto crítico da função, pois as raízes de f '(x), que corresponde à, 3x²-4x+3, são raízes complexas, dai eu n sei como representálas no gráfico( a dúvida é em relação a complexos então..), as raízes são : x' = 0,66 + 0,74.i e x" = 0,66 - 0,74.i Como represento elas graficamente? Agradecido.


Eu presumo que a função seja f(x) = x^3 - 2x^2 + 3x e não f(x) = x^3 - 2x + 3x como você escreveu.

Você não tem que representar as raízes complexas. Lembre-se que o fato de uma função polinomial do 2° grau ter raízes complexas significa que seu gráfico não toca no eixo x. Ou seja, dependendo da concavidade da parábola (que representa o gráfico dessa função polinomial), irá ocorrer p(x) > 0 ou p(x) < 0 para todo x no domínio de p.

No caso, temos o polinômio f^\prime(x) = 3x^2 - 4x + 3 . Como suas raízes são complexas e a concavidade da parábola é para cima, temos que f^\prime(x) > 0 para todo x.

Como a primeira derivada é sempre positiva, temos que o gráfico de f é sempre crescente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.