• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite]teorema do confronto

[limite]teorema do confronto

Mensagempor gabriel feron » Dom Mai 06, 2012 20:25

\lim_{x->0}\frac{sen7x}{7x}
Boa noite minha duvida é a seguinte, existe o teorema do confronto, nao estudei ela ainda em aula, meus veteranos me falaram que teriamos usar pra conseguir chegar ao resultado final que é 1, mas me enrolei quando temos que transformar(derivando) sen em cos, pq? qual a logica? (nao tivemos derivada ainda, mas tenho um certo conhecimento, pq pesquisei bastante)

(sen7x)/7x = (senx)/x= cosx/1 = (cos0)/1 = 1/1

mas nao entendi o motivo

Att
G. Feron
obrigado!
gabriel feron
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Abr 16, 2012 03:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Hídrica
Andamento: cursando

Re: [limite]teorema do confronto

Mensagempor MarceloFantini » Dom Mai 06, 2012 22:53

Este é um dos chamados limites fundamentais, onde \lim_{x \to 0} \frac{sen \, x}{x} = 1. O importante é perceber que sempre que a variável do seno estiver dividindo-o e ambos tenderem para zero, então o limite é 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.