• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Adição e Subtração de Arcos.

Adição e Subtração de Arcos.

Mensagempor DPeres » Sáb Mai 05, 2012 02:13

Sabendo-se que sen(x).cos(x)=0,4 e que 0<x<45,calcule 300.tgx:
DPeres
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mai 05, 2012 01:54
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: Adição e Subtração de Arcos.

Mensagempor LuizAquino » Sáb Mai 05, 2012 10:08

DPeres escreveu:Sabendo-se que sen(x).cos(x)=0,4 e que 0<x<45,calcule 300.tgx:


Lembrando da identidade trigonométrica fundamental, note que você pode montar um sistema:

\begin{cases}
\textrm{sen}^2\, x +  \cos^2 x = 1 \\
\textrm{sen}\, x\cos x = 0,4 \\
\end{cases}

Isolando o seno na segunda e substituindo na primeira, temos que:

\left(\frac{0,4}{\cos x}\right)^2 + \cos^2 x = 1

\frac{0,16}{\cos^2 x} + \cos^2 x = 1

\frac{0,16 + \cos^4 x}{\cos^2 x}  = 1

0,16 + \cos^4 x  = \cos^2 x

\cos^4 x  - \cos^2 x  + 0,16 = 0

Fazendo a substituição y = \cos^2 x , podemos escrever que:

y^2  - y  + 0,16 = 0

Agora tente terminar o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Adição e Subtração de Arcos.

Mensagempor DPeres » Dom Mai 06, 2012 02:41

cheguei até aí. Mas não consegui nada!! depois.
DPeres
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mai 05, 2012 01:54
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: Adição e Subtração de Arcos.

Mensagempor LuizAquino » Dom Mai 06, 2012 09:05

DPeres escreveu:cheguei até aí. Mas não consegui nada!! depois.


Temos a equação:

y^2 - y + 0,16 = 0

Note que 0,16 é o mesmo que \frac{16}{100} . Simplificando a fração, ficamos apenas com \frac{4}{25} . Sendo assim, podemos reescrever a equação como:

y^2 - y + \frac{4}{25} = 0

Resolvendo essa equação polinomial do 2º, temos que:

\Delta = (-1)^2 - 4 \cdot 1 \cdot \frac{4}{25} = \frac{9}{25}

y = \frac{-(-1) \pm \sqrt{\frac{9}{25}}}{2\cdot 1} \implies \begin{cases}y_1 = \dfrac{4}{5} \\ \\ y_2 = \dfrac{1}{5}\end{cases}

Lembrando que fizemos a substituição y = \cos^2 x, temos que:

(i) \frac{4}{5} = \cos^2 x \implies \cos x = \pm \frac{2\sqrt{5}}{5}

(ii) \frac{1}{5} = \cos^2 x \implies \cos x = \pm \frac{\sqrt{5}}{5}

Agora tente terminar o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?