• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Adição e Subtração de Arcos.

Adição e Subtração de Arcos.

Mensagempor DPeres » Sáb Mai 05, 2012 02:38

A expressão sen(7? 2) + sen(x+11?).cotg(x+11? 2) cos(9? - x) com x E [0,45] é equivalente a:
DPeres
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mai 05, 2012 01:54
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: Adição e Subtração de Arcos.

Mensagempor LuizAquino » Sáb Mai 05, 2012 11:20

DPeres escreveu:A expressão sen(7? 2) + sen(x+11?).cotg(x+11? 2) cos(9? - x) com x E [0,45] é equivalente a:


O primeiro seno, eu presumo que seja: \textrm{sen}\,\frac{7\pi}{2} .

Já na cotangente, eu presumo que seja: \textrm{cotg}\,\left(x + \frac{11\pi}{2}\right) .

O que você precisa fazer nesse exercício é apenas aplicar as fórmulas para a soma e para a subtração de arcos.

Por exemplo, você já deve saber que:

\cos(9\pi - x) = \cos 9\pi\cos x + \,\textrm{sen}\,9\pi\,\textrm{sen}\,x

Como 9\pi = 4(2\pi) + \pi , temos que o ângulo 9\pi é côngruo ao ângulo \pi, já que partindo de \pi e dando 4 voltas completas nós chegamos em 9\pi . Portanto, temos que \cos 9\pi = \cos \pi = -1 e \textrm{sen}\, 9\pi = \textrm{sen}\, \pi = 0 . Sendo assim, temos que \cos(9\pi - x) = -\cos x .

Agora basta continuar a resolução, aplicando as fórmulas e analisando os ângulos. Tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59