• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função - Valor do coeficiente a]

[Função - Valor do coeficiente a]

Mensagempor Paula Morais » Sex Mai 04, 2012 17:56

Deseja-se obter valores convenientes para os coeficientes a e b da equação x²+ax+b=2x+1, de modo que na sua resolução se encontrem exatamente duas soluções: X1 = -5 e X2= 0. Nessas condições, qual deve ser o valor do coeficiente a.

Eu tentei resolver pela fórmula de baskara,

Mas, não consegui.... Alguém pode me ajudar ???
Paula Morais
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mai 04, 2012 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Função - Valor do coeficiente a]

Mensagempor Guill » Sex Mai 04, 2012 18:26

x² + ax + b = 2x + 1


Como queremos os valores x = -5 e x = 0:


0² + a.0 + b = 2.0 + 1
(-5)² + a(-5) + b = 2.(-5) + 1


b = 1
25 - 5a + b = -9

b = 1

b - 5a = -34



Portanto:

1 - 5a = -34

5a = 35

a = 7



Logo, os valores são:

b = 1
a = 7
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}