• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 2° grau

Equação do 2° grau

Mensagempor karen » Qui Mai 03, 2012 21:14

\left( x-3 \right)=\sqrt[2]{x+3}

O enunciado pede para resolver essa equação em R.
Primeiramente eu elevei os dois membros ao quadrado para que a raiz fosse eliminada.
No fim caiu em uma equação do segundo grau e ao resolver, x1=1 e x2=6.
Na resposta do meu livro está apenas como resposta o x=6.
Porque a resposta x=1 foi eliminada?
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado

Re: Equação do 2° grau

Mensagempor DanielFerreira » Qui Mai 03, 2012 21:27

karen escreveu:\left( x-3 \right)=\sqrt[2]{x+3}

O enunciado pede para resolver essa equação em R.
Primeiramente eu elevei os dois membros ao quadrado para que a raiz fosse eliminada.
No fim caiu em uma equação do segundo grau e ao resolver, x1=1 e x2=6.
Na resposta do meu livro está apenas como resposta o x=6.
Porque a resposta x=1 foi eliminada?

Sempre que resolver equações envolvendo raízes, deverá fazer uma simples VERIFICAÇÃO.
Veja:
Quando x' = 1:
x - 3 = \sqrt[]{x + 3}

1 - 3 = \sqrt[]{1 + 3}

- 2 = \sqrt[]{4}

- 2 = 2 ===============> FALSA



Quando x' = 6:
x - 3 = \sqrt[]{x + 3}

6 - 3 = \sqrt[]{6 + 3}

3 = \sqrt[]{9}

3 = 3 ============> VERDADEIRA
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Equação do 2° grau

Mensagempor karen » Qui Mai 03, 2012 21:54

Mais uma dúvida...
\sqrt[2]{4} não é mais ou menos 2?
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado

Re: Equação do 2° grau

Mensagempor Russman » Qui Mai 03, 2012 22:32

karen escreveu:\left( x-3 \right)=\sqrt[2]{x+3}

O enunciado pede para resolver essa equação em R.
Primeiramente eu elevei os dois membros ao quadrado para que a raiz fosse eliminada.
No fim caiu em uma equação do segundo grau e ao resolver, x1=1 e x2=6.
Na resposta do meu livro está apenas como resposta o x=6.
Porque a resposta x=1 foi eliminada?


\left( x-3 \right)=\sqrt[2]{x+3}

Se você elevar ambos membros ao quadrado teremos

{(x-3)}^{2} = \left|x+3 \right|

Supondo x+3\geq 0 então \left|x+3 \right| = x+3. Assim,

{(x-3)}^{2} = x+3 \Rightarrow {x}^{2} - 7x + 6 = 0 \Rightarrow x=\left\{\begin{matrix}
6\\ 
1
\end{matrix}\right.

Então, como supomos x+3\geq 0 as duas soluções são válidas.

Supondo x+3\leq 0 então \left|x+3 \right| = -x-3. Assim,

{(x-3)}^{2} = -x-3 \Rightarrow {x}^{2} - 5x + 12 = 0 \Rightarrow x\ni\mathbb{R}.


Na MINHA opiniãox=1 também é solução! Pois \sqrt[]{4}= \pm 2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Equação do 2° grau

Mensagempor karen » Qui Mai 03, 2012 22:53

Muito obrigada!
Vou procurar me informar mais, já que vou prestar vestibular esse ano e se tiver uma questão dessa multipla escolha eu não posso colocar duas alternativas não é?
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado

Re: Equação do 2° grau

Mensagempor Russman » Qui Mai 03, 2012 23:21

É. Formalmente, x=1 não é solução.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: