Peço ajuda no cálculo da derivada, pela definição, da função
.Comecei por
. Depois tentei ir desenvolver, aplicando o conjugado do numerador, mas a partir daí não consegui avançar.Obrigado!
.
. Depois tentei ir desenvolver, aplicando o conjugado do numerador, mas a partir daí não consegui avançar.
emsbp escreveu:Peço ajuda no cálculo da derivada, pela definição, da função.
Comecei por. Depois tentei ir desenvolver, aplicando o conjugado do numerador, mas a partir daí não consegui avançar.
![\left[\left(\sqrt[4]{x+h}\right)^3 + \left(\sqrt[4]{x+h}\right)^2\left(\sqrt[4]{x}\right) + \left(\sqrt[4]{x+h}\right)\left(\sqrt[4]{x}\right)^2 + \left(\sqrt[4]{x}\right)^3\right] \left[\left(\sqrt[4]{x+h}\right)^3 + \left(\sqrt[4]{x+h}\right)^2\left(\sqrt[4]{x}\right) + \left(\sqrt[4]{x+h}\right)\left(\sqrt[4]{x}\right)^2 + \left(\sqrt[4]{x}\right)^3\right]](/latexrender/pictures/72c016027c55d18dc3e1daac934244ac.png)



emsbp escreveu:Agora a dúvida é como chegou à expressão que diz que tenho que multiplicar ao numerador e ao denominador.
![\sqrt[4]{x+h}-\sqrt[4]{x} \sqrt[4]{x+h}-\sqrt[4]{x}](/latexrender/pictures/a17d9920a84610f95155bf97f59bb30a.png)
![\left(\sqrt[4]{x+h}\right)^4- \left(\sqrt[4]{x}\right)^4 \left(\sqrt[4]{x+h}\right)^4- \left(\sqrt[4]{x}\right)^4](/latexrender/pictures/7944cc1d9e586762d98a12b57afecaaa.png)

![a =\sqrt[4]{x+h} a =\sqrt[4]{x+h}](/latexrender/pictures/b99ecc8215c4d73e13163d6b7ee28426.png)
![b =\sqrt[4]{x} b =\sqrt[4]{x}](/latexrender/pictures/61b265ca748d56b0dfc9c405b1e5a8fa.png)
![\,= \left(\sqrt[4]{x+h} - \sqrt[4]{x}\right)\left[\left(\sqrt[4]{x+h}\right)^3 + \left(\sqrt[4]{x+h}\right)^2\left(\sqrt[4]{x}\right) + \left(\sqrt[4]{x+h}\right)\left(\sqrt[4]{x}\right)^2 + \left(\sqrt[4]{x}\right)^3\right] \,= \left(\sqrt[4]{x+h} - \sqrt[4]{x}\right)\left[\left(\sqrt[4]{x+h}\right)^3 + \left(\sqrt[4]{x+h}\right)^2\left(\sqrt[4]{x}\right) + \left(\sqrt[4]{x+h}\right)\left(\sqrt[4]{x}\right)^2 + \left(\sqrt[4]{x}\right)^3\right]](/latexrender/pictures/56399eadfd7ef352e099335ff672ec02.png)


Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, mas negativo pois tem de ser no quarto quadrante. Se
, então
. Como módulo é um:
.
.