• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(Calculo de trigonometria) Calcule o valor da expressão

(Calculo de trigonometria) Calcule o valor da expressão

Mensagempor andersontricordiano » Seg Dez 05, 2011 21:59

Calcule o valor da expressão y=\frac{2secx+3cotgx}{-tgx+2cossecx} , sendo x um arco do 2º quadrante e cos x=-\frac{1}{4}

Resposta:

\frac{-3-8\sqrt[]{15}}{23}

Agradeço quem resolver!!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (Calculo de trigonometria) Calcule o valor da expressão

Mensagempor nakagumahissao » Seg Abr 30, 2012 00:43

Esta questão não é difícil de ser resolvida, no entanto é deveras, trabalhosa. Ao trabalho então:

y = \frac{2sec(x) + 3 cot (x)}{-tan(x) + 2 csc(x)} \Rightarrow

\Rightarrow y = \frac{2\frac{1}{cos(x)} + 3 \frac{cos(x)}{sin(x)}}{-\frac{sin(x)}{cos(x)}+ 2 \frac{1}{sin(x)}} \Rightarrow

\Rightarrow y = \frac{2\frac{1}{- \frac{1}{4}} + 3 \frac{\frac{-1}{4}}{sin(x)}}{-\frac{sin(x)}{\frac{-1}{4}}+ 2 \frac{1}{sin(x)}} \Rightarrow

\Rightarrow y = \frac{-8 - \frac{3}{4sin(x)}}{4sin(x) + \frac{2}{sin(x)}} = \frac{\frac{-32sin(x) - 3}{4sin(x)}}{\frac{4{sin}^{2}(x) + 2}{sin(x)}} \Rightarrow

\Rightarrow y = \frac{-3 -32sin(x)}{16{sin}^{2}(x) + 8} = \frac{-3 -32\sqrt[2]{1 - {cos}^{2}(x)}}{16(1 - {cos}^{2}(x) + 8} \Rightarrow

\Rightarrow y = \frac{-3 -32\sqrt[2]{1 - \frac{1}{16}}}{16(1 - \frac{1}{16}) + 8} = \frac{-3 -32\sqrt[2]{\frac{15}{16}} }{16(\frac{15}{16}) + 8} \Rightarrow

\Rightarrow y = \frac{-3 - \frac{32}{4}\sqrt[2]{15}}{23} \Rightarrow

Por fim:

\Rightarrow y = \frac{-3 - 8 \sqrt[2]{15}}{23}

Que é a resposta procurada.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}