• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites - Indeterminação do tipo 0X+infinito

Limites - Indeterminação do tipo 0X+infinito

Mensagempor Pollyanna Moraes » Sáb Abr 28, 2012 15:04

como tirar a seguinte indeterminação?
\lim_{x \rightarrow+\infty}{e}^{-x}\left(-x -1 \right)
Agradeço desde já ^^
Pollyanna Moraes
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 15, 2011 12:50
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Limites - Indeterminação do tipo 0X+infinito

Mensagempor Guill » Dom Abr 29, 2012 09:05

\lim_{x\rightarrow\infty} e^{-x}\left(-x-1 \right)

-\lim_{x\rightarrow\infty} \frac{1}{e^x}.(x+1)


A resolução desse limite pode ser feita usando-se o Teorema do Confronto. Fica claro que, para valores de x maiores do que 1, a função f(x)= \frac{1}{e^x}.(x+1) nunca será menor que a função y= \frac{1}{e^x}. Portanto, podemos considerar:

\frac{1}{e^x} \leq \frac{x+1}{e^x} \leq \frac{-1}{e^x}

\lim_{x\rightarrow\infty} \frac{1}{e^x} = 0

\lim_{x\rightarrow\infty} \frac{-1}{e^x} = 0



Portanto, pelo Teorema do Confronto:

\lim_{x\rightarrow\infty} \frac{x+1}{e^x} = 0

\lim_{x\rightarrow\infty} e^{-x}\left(-x-1 \right) = -0 = 0
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.