por Claudin » Sáb Abr 28, 2012 18:54
Princípios básicos para encontrar equação da reta:
Nas formas, cartesiana, vetorial, paramétrica e simétrica.
- Com 2 pontos sei chegar em todas as equações
- Com 1 ponto e um vetor, também consigo
- Agora, quando temos uma equação na forma cartesiana como chegar, nos vetores diretores?
Por exemplo:
Determine as posições relativas das retas a seguir:
2x-3y = 12
4x =3y = 6
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Henrique Bueno » Sáb Abr 28, 2012 20:48
hahaha, esse é um método que nenhum professor irá usar, mas dá certo.
a primeira reta, se x=1, y=-10/3 logo (1, -10/3) é um ponto da reta, se x=2, y= -8/3, então (2,-8/3) é outro ponto da reta.
a partir dele você pode ter um vetor diretor da reta na forma (x2-x1)i+(y2-y1)j+(z2-z1)k=v
fazendo isso para as duas é possível obter um diretor de cada hahaha..
Em exercicios do tipo "tenho a reta tal e tal ponto fora da reta, determine o ponto que contem o vetor e o ponto", é mais facil determinar 2 pontos pertencentes da reta, pegar o terceiro e achar a equação cartesiana do que pegar o vetor diretor etc.. ahaha =) isso facilitou MTO pra mim nas provas desse primeiro bimestre
-
Henrique Bueno
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qua Mar 02, 2011 19:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Cleyson007 » Dom Abr 29, 2012 16:26
Boa tarde Claudin!
Claudin, acredito que a segunda equação seja 4x-3y=6. São muitas as maneiras de resolver essa questões das posições das retas. Veja se te ajuda em algo:
Resolvendo em ordem a y, temos que r: y=2/3 x-4 e s:y=4/3 x-2. Como mr? ms, as retas são concorrentes. Outro modo é resolver o sistema. A solução do sistema é o ponto P(-3,-6), o que prova que as retas são concorrentes (nesse ponto). Outro método é, partir das equações Ax+By=C e A'x+B'y=C', e ver se A/A'? B/B'?as retas são concorrentes; se A/A'=B/B'=C/C'?as retas são paralelas coincidentes; se A/A'=B/B'?C/C' ?as retas são paralelas (distintas).
Para encontrar vetores diretores podemos determinar 2 pontos P e Q da reta e determinar o vetor PQ=Q-P. Por exemplo, na reta y=2/3x-4, fazendo x=0, vem y=-4; fazendo x=3, vem y=-2. Então P(0,-4) e Q(3,-2), pelo que um vetor diretor será (3,-2)-(0,-4)=(3,2).
Você pode também considerar que o declive da reta m=u2/u1, em que (u1,u2) é um vetor diretor da reta. Assim, temos na 1ª reta o vetor (3,2) e na 2ª reta o vetor (3,4).
Espero ter ajudado
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação da Reta] Reta que passa por pontos do plano.
por acorreia » Qua Mai 02, 2012 17:31
- 1 Respostas
- 2365 Exibições
- Última mensagem por Russman

Qua Mai 02, 2012 21:25
Geometria Analítica
-
- [Estudo da reta] Determinar a equação de uma reta
por Isabelagarcia » Qui Jul 24, 2014 23:45
- 0 Respostas
- 1518 Exibições
- Última mensagem por Isabelagarcia

Qui Jul 24, 2014 23:45
Geometria Analítica
-
- [Equação da reta] Encontrando equação paramétrica.
por Vitor Sanches » Qua Jun 26, 2013 17:54
- 0 Respostas
- 5998 Exibições
- Última mensagem por Vitor Sanches

Qua Jun 26, 2013 17:54
Geometria Analítica
-
- Equação da Reta
por aline2010 » Dom Jun 13, 2010 23:16
- 1 Respostas
- 1589 Exibições
- Última mensagem por Elcioschin

Seg Jun 14, 2010 12:16
Geometria Analítica
-
- Equação da reta
por marcio277 » Sex Nov 19, 2010 15:04
- 1 Respostas
- 1468 Exibições
- Última mensagem por Molina

Sex Nov 19, 2010 15:13
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.