• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetor diretor

Vetor diretor

Mensagempor Claudin » Sáb Abr 28, 2012 17:14

Tenho uma dúvida nesse conceito.

Teoricamente o vetor diretor, é perpendicular a reta, correto?

Pois então, quando tenho equação cartesiana como faço para encontrar os vetores diretores?

Por exemplo:

r1: 2x-3y=12
r2: 4x+3y=6

Posso afirmar que o vetor diretor da r1 seria, (3,-2) e da reta r2 seria (-3,-4)

Ou seja, para encontrar basta trocar a ordem dos números que multiplicam a incógnita e mudar o sinal?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Vetor diretor

Mensagempor Russman » Sáb Abr 28, 2012 18:05

Nãao, o vetor diretor é paralelo a reta!

Dado um ponto pertencente a uma reta r e seja \overrightarrow{v} = <v_{x},v_{y},v_{z}> um vetor diretor desta reta.
Assim,

r: <x,y,z> = <x_{0},y_{0},z_{0}> + k.<v_{x},v_{y},v_{z}>

onde k é uma constante real qualquer.

A sua primeira reta é r_{1} : 2x - 3y = 12. Parametrizando ela, isto é, tomando x=t e , portanto, y = \frac{2}{3}t - 4.

É possível demonstrar que o vetor diretor é dado pelos ceficientes de t das equ. paramétricas de reta.
Assim,

\overrightarrow{v} = <v_{x},v_{y},v_{z}> = <1,\frac{2}{3},0> = <1,\frac{2}{3}>.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Vetor diretor

Mensagempor Russman » Sáb Abr 28, 2012 18:15

Veja que o vetor diretor não é somente este \overrightarrow{v} mas sim qualquer múltiplo real do mesmo.

Para calcular um vetor normal a reta, isto é, perpendicular a ela basta que ele seja perpendicular ao veotr diretor. Seja \overrightarrow{n} um vetor normal da reta r que tem como vetor diretor \overrightarrow{v}. Assim,

\overrightarrow{v}\cdot \overrightarrow{n} = 0.

De onde,

v_{x}n_{x} + v_{y}n_{y} = 0.

Se tomarmos n_{x} = -\frac{v_{y}}{v_{x}}.n_{y} e n_{y} real solucionamos o problema!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Vetor diretor

Mensagempor Claudin » Sáb Abr 28, 2012 18:25

Resumindo, o vetor diretor pode ser encontrado como eu disse acima?
Os vetores diretores no qual eu citei estão corretos?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}