• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício teórico

Exercício teórico

Mensagempor Cleyson007 » Sex Abr 27, 2012 12:28

Bom dia a todos!

Mostre que se a\in(0,+\infty) temos \lim_{n\rightarrow\infty}\sqrt[n]{n}=1

Se alguém puder me ajudar, agradeço.

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Exercício teórico

Mensagempor fraol » Sex Abr 27, 2012 13:04

Bom dia,

Presumo que a expressão seja: \lim_{n\rightarrow\infty}\sqrt[n]{a}=1

Veja que \sqrt[n]{a}=a^{\frac{1}{n}}.

O que acontece com o expoente \frac{1}{n} quando n tende ao infinito?

Veja se consegue prosseguir, do contrário manda a dúvida pra cá.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Exercício teórico

Mensagempor Cleyson007 » Sáb Abr 28, 2012 10:58

Bom dia Fraol!

Amigo, sinceramente eu não tenho noção de como prosseguir.. Se puder me ajudar com a resolução do exercício ficarei muito grato.

Fico no aguardo.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Exercício teórico

Mensagempor fraol » Sáb Abr 28, 2012 11:33

Bom dia,

Então vamos continuar:

fraol escreveu:O que acontece com o expoente \frac{1}{n} quando n tende ao infinito?


Vamos atribuir alguns valores crescentes para n e ver como \frac{1}{n} varia:

n = 1 => \frac{1}{n} = 1

n = 10 => \frac{1}{n} = 0.1

n = 100 => \frac{1}{n} = 0.01

n = 1000 => \frac{1}{n} = 0.001

n = 10000 => \frac{1}{n} = 0.0001

...

Note que ao aumentarmos o valor de n sucessivamente, o valor de \frac{1}{n} se aproxima cada vez mais de 0. Costuma se dizer que a sequência \left( \frac{1}{n} \right) tende a 0 quando n tende ao infinito.

Agora aplicando isso ao limite original teremos:

\lim_{n\rightarrow\infty}\sqrt[n]{a} = \lim_{n\rightarrow\infty} a^{\frac{1}{n}} = a^0 = 1.


.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Exercício teórico

Mensagempor Guill » Sáb Abr 28, 2012 11:50

Esse limite não pode ser resolvido substituindo o valor, já que {\infty}^{0} é uma indeterminação. Mas, observe que supondo:

y = {n}^{\frac{1}{n}}

\lim_{n\rightarrow\infty}y = \lim_{n\rightarrow\infty}{n}^{\frac{1}{n}}

\lim_{n\rightarrow\infty}ln(y) = \lim_{n\rightarrow\infty}ln\left({n}^{\frac{1}{n}} \right)

\lim_{n\rightarrow\infty}ln(y) = \lim_{n\rightarrow\infty}\frac{1}{n}.ln(n)

\lim_{n\rightarrow\infty}ln(y) = \lim_{n\rightarrow\infty}\frac{ln(n)}{n}


Aplicando a regra de L'hospital:

\lim_{n\rightarrow\infty}ln(y) = \lim_{n\rightarrow\infty}\frac{\frac{1}{n}}{1}=0


Uma vez que ln(y)\rightarrow0 quando n\rightarrow\infty, y\rightarrow1 quando n\rightarrow\infty. Dessa forma:

\lim_{n\rightarrow\infty}y = \lim_{n\rightarrow\infty}\sqrt[n]{n}=1
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}