• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analítica

Geometria Analítica

Mensagempor marinalcd » Sex Abr 27, 2012 21:38

Seja ABC um triângulo de area 4 tal que AB está contido em r1 e AC está contido em r2, onde r1 = {(t; 3t + 1; 0); com t pertencendo aos reais} e r2 e paralela ao vetor u = (3; 1; 0) e passa pelo ponto M = (3; 2; 0). Determine a equacão da reta r3 paralela ao vetor v = (1;-1; 0) que contém o lado BC e determine os vertices A, B e C do triângulo.

Bom, consegui achar o vértice A , calculando a interseção entre as retas r1 e r2.

tentei usar a fórmula da área do triângulo por determinante, para achar outro vértice, mas não consegui, não deu certo.
Depois disse que um ponto para montar a equação de r3 seria o mesmo ponto de r2 = (3,2,0). Mas depois parei para pensar e vi que não posso afirmar que o ponto de interseção dentre r2 e r3 é esse.

Não estou conseguindo achar os vértices B e C e não sei sde posso montar a equação de r3 desse jeito.
Alguém pode me ajudar??
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Geometria Analítica

Mensagempor LuizAquino » Sáb Abr 28, 2012 12:56

marinalcd escreveu:Seja ABC um triângulo de área 4 tal que AB está contido em r1 e AC está contido em r2, onde r1 = {(t; 3t + 1; 0); com t pertencendo aos reais} e r2 é paralela ao vetor u = (3; 1; 0) e passa pelo ponto M = (3; 2; 0). Determine a equação da reta r3 paralela ao vetor v = (1;-1; 0) que contém o lado BC e determine os vértices A, B e C do triângulo.


marinalcd escreveu:Bom, consegui achar o vértice A , calculando a interseção entre as retas r1 e r2.


Ok. Nesse caso, temos que A = (0, 1, 0).

marinalcd escreveu:tentei usar a fórmula da área do triângulo por determinante, para achar outro vértice, mas não consegui, não deu certo.


Você vai precisar usar o fato de que \frac{1}{2}\left\|\overrightarrow{AB}\times \overrightarrow{AC}\right\| = 4 .

marinalcd escreveu:Depois disse que um ponto para montar a equação de r3 seria o mesmo ponto de r2 = (3,2,0). Mas depois parei para pensar e vi que não posso afirmar que o ponto de interseção dentre r2 e r3 é esse.


De fato, você não pode afirmar isso. A final de contas, a interseção entre r2 e r3 deve ser o ponto C. Fazendo a suposição de que r3 passa por (3, 2, 0) (que é um ponto pertencente a r2), você estaria dizendo que C é igual a (3, 2, 0). Mas isso não é verdade.

Vejamos como seguir pelo caminho da área do triângulo.

Pelos dados do exercício, o vetor \vec{v} = (1;\,-1;\,0) é paralelo a reta r3. Além disso, a reta r3 contém BC. Desse modo, devemos ter \overrightarrow{BC} // \vec{v} . Isso significa que existe um escalar k tal que \overrightarrow{BC} = k\vec{v} . Portanto, temos que \overrightarrow{BC} = (k;\,-k,\,0) .

Como B pertence a reta r1 e C pertence a reta r2, temos que B = (b; 3b + 1; 0) e C = (3c + 3; c + 2; 0), com b e c sendo algum escalar.

Sendo assim, temos que:

\overrightarrow{BC} = (k;\, -k;\, 0)

C - B = (k;\, -k;\, 0)

(3c - b + 3;\, c - 3b + 1;\, 0) = (k;\, -k;\, 0)

c - 3b + 1 = -(3c - b + 3)

c = b - 1

Substituindo c por b - 1 na expressão para o ponto C, temos que C = (3b; b + 1; 0).

Por outro lado, a área de ABC é igual a 4. Isso significa que \frac{1}{2}\left\|\overrightarrow{AB}\times \overrightarrow{AC}\right\| = 4 .

Mas sabemos que:

\overrightarrow{AB} = B - A = (b;\, 3b + 1;\, 0) - (0;\, 1;\, 0) = (b;\, 3b;\, 0)

\overrightarrow{AC} = C - A = (3b;\, b + 1;\, 0) - (0;\, 1;\, 0) = (3b;\, b;\, 0)

Sendo assim, temos que:

\overrightarrow{AB}\times \overrightarrow{AC} = \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\ b & 3b & 0 \\ 3b & b & 0\end{vmatrix} = -8b^2\vec{k} = (0;\, 0;\, -8b^2)

Agora tente continuar o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.