• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mudança de Variável

Mudança de Variável

Mensagempor DanielFerreira » Dom Abr 22, 2012 13:58

danjr5 escreveu: Calcule \int_{D}^{}\int_{}^{}\frac{y + 2x}{\sqrt[]{y - 2x - 1}}dx dy, onde D é a região do plano xy limitada pelas retas y - 2x = 2, y + 2x = 2, y - 2x = 1 e y + 2x = 1

Fiz assim:
considerei...
u = y + 2x
v = y - 2x - 1

Calculei o Jacobiano e encontrei \frac{1}{4};

Substituí u e v em todas as retas e encontrei: v = 1, u = 2, v = 0 e u = \frac{1}{2}

Minha integral ficou assim: \int_{0}^{1}\int_{\frac{1}{2}}^{2}\frac{u}{\sqrt[]{v}}.\frac{1}{4} du dv

Calculando-a achei \frac{15}{16}.

Segundo o gabarito é \frac{3}{4}.

Desde já agradeço a quem puder ajudar.

Att,

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Mudança de Variável

Mensagempor LuizAquino » Ter Abr 24, 2012 18:48

danjr5 escreveu:
Calcule \int_{D}^{}\int_{}^{}\frac{y + 2x}{\sqrt[]{y - 2x - 1}}dx dy, onde D é a região do plano xy limitada pelas retas y - 2x = 2, y + 2x = 2, y - 2x = 1 e y + 2x = 1

Fiz assim:
considerei...
u = y + 2x
v = y - 2x - 1

Calculei o Jacobiano e encontrei \frac{1}{4};

Substituí u e v em todas as retas e encontrei: v = 1, u = 2, v = 0 e u = \frac{1}{2}

Minha integral ficou assim: \int_{0}^{1}\int_{\frac{1}{2}}^{2}\frac{u}{\sqrt[]{v}}.\frac{1}{4} du dv

Calculando-a achei \frac{15}{16}.

Segundo o gabarito é \frac{3}{4}.


Reveja o intervalo de integração para u. Note que ele será [1, 2].
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Mudança de Variável

Mensagempor DanielFerreira » Ter Abr 24, 2012 20:31

LuizAquino,
muito obrigado. Encontrei o erro!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59