• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Oi como vai...

Oi como vai...

Mensagempor Fiel8 » Qua Jul 01, 2009 16:59

Como se resolve as seguintes inequaçoes, usando o processo que julgar mais conveniente:
3x-4>0 , 3-4x>x-7...
Fiel8
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 16, 2009 17:21
Formação Escolar: EJA
Andamento: cursando

Re: Oi como vai...

Mensagempor Cleyson007 » Qua Jul 01, 2009 18:11

Boa tarde Fiel8!

Assim que é resolvido: 3x-4>0

3x>4 (Note que passei o 4 depois do sinal de >, mudando seu sinal)

Logo, x>\frac{4}{3}.

Comente qualquer dúvida, :y: ?

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.