• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão FUVEST

Questão FUVEST

Mensagempor LuRodrigues » Seg Abr 23, 2012 13:26

(FUVEST) Suponha que a taxa de inflação seja 30% ao mês durante 12 meses; daqui a um ano seja instituído o "cruzado novo", valendo Cz$ 1.000; e que sejam colocadas em circulação moedas de 10 centavos, 50 centavos e 1 cruzado novo. Qual será então o preço, em cruzados novos, de um cafezinho que custa hoje Cz$ 20,00?

a) NCZ$ 0,20
b) NCZ$ 0,30
c) NCZ$ 0,40
d) NCZ$ 0,50
e) NCZ$ 0,60
LuRodrigues
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 22, 2012 19:03
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Questão FUVEST

Mensagempor Fabiano Vieira » Seg Abr 23, 2012 19:30

Imagem

Se existe somente moedas de 1,10 e 50 centavos, não seria possível cobrar os 0,46. Então 0,50.
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}