• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Opa...

Opa...

Mensagempor Fiel8 » Qua Jul 01, 2009 17:10

Como determinar x nas igualdades: log2 64=x ,logx 125=3,-1=log3 x, x=log9 27 ...
Fiel8
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 16, 2009 17:21
Formação Escolar: EJA
Andamento: cursando

Re: Opa...

Mensagempor Cleyson007 » Qua Jul 01, 2009 17:31

Boa tarde Fiel8!

Quanto ao primeiro logaritmo --> {log}_{2}64=x

Resolva usando a propriedade dos logaritmos: {2}^{x}=64

Daí, basta fatorar o 64 e colocá-lo com base 2. --> {2}^{x}={2}^{6}

Cortando a base 2 --> x=6

Agora, tente fazer os outros :y:

Comente qualquer dúvida, ok?

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}