• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fração algébrica

Fração algébrica

Mensagempor LuizCarlos » Sáb Abr 21, 2012 19:04

Olá amigos professores!

Estou tentando resolver essa fração algébrica, mas não estou entendendo!

Comecei a resolver, porém, não sei como continuar!

(\frac{a+b}{a-b} - \frac{a-b}{a+b}) : \frac{4ab}{a+b} = \frac{({a+b})^{2}-({a-b})^{2}}{(a-b).(a+b)}.\frac{a+b}{4ab}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Fração algébrica

Mensagempor Russman » Sáb Abr 21, 2012 19:31

Expande os quadrados! O resultado será

\frac{1}{(a-b)} .
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Fração algébrica

Mensagempor DanielFerreira » Sáb Abr 21, 2012 20:09

LuizCarlos escreveu:Olá amigos professores!

Estou tentando resolver essa fração algébrica, mas não estou entendendo!

Comecei a resolver, porém, não sei como continuar!

(\frac{a+b}{a-b} - \frac{a-b}{a+b}) : \frac{4ab}{a+b} = \frac{({a+b})^{2}-({a-b})^{2}}{(a-b).(a+b)}.\frac{a+b}{4ab}

\left[\frac{(a + b)}{(a - b)} - \frac{(a - b)}{(a + b)}} \right]: \frac{4ab}{(a + b)} =


\left[\frac{(a + b)^2 - (a - b)^2}{(a + b)(a - b)} \right] . \frac{(a + b)}{4ab} =


\frac{(a^2 + 2ab + b^2 - a^2 + 2ab - b^2)}{(a + b)(a - b)} . \frac{(a + b)}{4ab} =


\frac{4ab}{(a + b)(a - b)} . \frac{(a + b)}{4ab} =


\frac{1}{a - b}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Fração algébrica

Mensagempor LuizCarlos » Sáb Abr 21, 2012 20:26

danjr5 escreveu:
LuizCarlos escreveu:Olá amigos professores!

Estou tentando resolver essa fração algébrica, mas não estou entendendo!

Comecei a resolver, porém, não sei como continuar!

(\frac{a+b}{a-b} - \frac{a-b}{a+b}) : \frac{4ab}{a+b} = \frac{({a+b})^{2}-({a-b})^{2}}{(a-b).(a+b)}.\frac{a+b}{4ab}

\left[\frac{(a + b)}{(a - b)} - \frac{(a - b)}{(a + b)}} \right]: \frac{4ab}{(a + b)} =


\left[\frac{(a + b)^2 - (a - b)^2}{(a + b)(a - b)} \right] . \frac{(a + b)}{4ab} =


\frac{(a^2 + 2ab + b^2 - a^2 + 2ab - b^2)}{(a + b)(a - b)} . \frac{(a + b)}{4ab} =


\frac{4ab}{(a + b)(a - b)} . \frac{(a + b)}{4ab} =


\frac{1}{a - b}


Muito obrigado amigo danjr5, você me ajudou bastante! consegui entender!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Fração algébrica

Mensagempor LuizCarlos » Sáb Abr 21, 2012 20:27

Russman escreveu:Expande os quadrados! O resultado será

\frac{1}{(a-b)} .


Muito obrigado amigo Russman!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Fração algébrica

Mensagempor DanielFerreira » Sáb Abr 21, 2012 20:29

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Fração algébrica

Mensagempor Russman » Sáb Abr 21, 2012 20:40

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59