por Calculista » Sáb Abr 21, 2012 20:05
Olá pessoal, é a minha primeira postagem aqui no fórum, portanto peço desculpas se fiz algo de errado quanto a formatação do post... mas a minha dúvida é a seguinte:
Pede-se para usar as diferenciais para aproximar cada uma das funções nos pontos indicados:

![f(x,y,z)= \sqrt[2]{{x}^{1/2}+{y}^{1/3}+{5z}^{2}} f(x,y,z)= \sqrt[2]{{x}^{1/2}+{y}^{1/3}+{5z}^{2}}](/latexrender/pictures/c33e12ba70938cf17c2a0bc474c5f6a9.png)
Ao resolver encontro os seguintes resultados: 6041para a primeira e 3,47 para a segunda. Entretanto as respostas enviadas pelo professor são 6037 e 3,04. Jogando as respostas do professor na calculadora encontra-se esses mesmos resultados. A pergunta é: essa discrepância entre os resultados é normal ou eu errei mesmo? Se eu errei, alguém pode apontar a saída para a solução dessas questões?
Agradeço desde já
-
Calculista
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Abr 21, 2012 19:42
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Calculista » Seg Abr 23, 2012 21:03
Alguém?
-
Calculista
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Abr 21, 2012 19:42
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo Diferencial] Diferenciais para estimar erro máximo
por wandeng » Sáb Abr 29, 2017 15:48
- 0 Respostas
- 4149 Exibições
- Última mensagem por wandeng

Sáb Abr 29, 2017 15:48
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de Áreas utilizando integrais
por Rambox » Ter Jun 14, 2011 14:38
- 2 Respostas
- 2213 Exibições
- Última mensagem por Rambox

Ter Jun 14, 2011 14:54
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 3] Volume do sólido utilizando Int Tripla
por CloudP4 » Sáb Dez 17, 2016 04:16
- 0 Respostas
- 4224 Exibições
- Última mensagem por CloudP4

Sáb Dez 17, 2016 04:16
Cálculo: Limites, Derivadas e Integrais
-
- Resultado para isso.. Simplificando..
por aninhawell » Dom Jun 24, 2012 12:32
- 1 Respostas
- 1072 Exibições
- Última mensagem por MarceloFantini

Seg Jun 25, 2012 01:20
Álgebra Elementar
-
- [Calculo] Equações Diferenciais
por karenfreitas » Seg Jul 18, 2016 18:35
- 0 Respostas
- 1155 Exibições
- Última mensagem por karenfreitas

Seg Jul 18, 2016 18:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.