por mateusmarques » Qui Abr 07, 2011 16:14
1. Leis de De Morgan - Dados dois conjuntos A e B, mostre que:
(a) (AUB)^C = A^C?B^C
(b) (A?B)^C = A^C U B^C
2. Seja ?={1,0}3 . Este conjunto pode ser visto como o conjunto de resultados de três lançamentos de uma moeda (0 denota coroa e 1 denota cara). Defina os conjuntos
A={? s1, s2, s3???: s2=1} e B={? s1, s2, s3???: s1?s2?s3=2} . Liste os elementos de cada
um dos conjuntos a seguir: ? , A, B, A^C , B^C , A?B , A?B , A \ B e B \ A .
-
mateusmarques
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Mar 25, 2011 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por Hannibal » Sex Abr 20, 2012 11:34
bom dia .
Eu nao estou conseguindo entender bem, essa lei, eu vi pelos diagramas, mais tenho que provar nao so por diagramas mais por elementos, nao estou pedindo resposta mais sim onde procuro?
porque ja revirei tudo na internet e em alguns livros e nao achei.
-
Hannibal
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Abr 20, 2012 11:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por LuizAquino » Sex Abr 20, 2012 19:32
1. Leis de De Morgan - Dados dois conjuntos A e B, mostre que:
(a) (AUB)^C = A^C?B^C
(b) (A?B)^C = A^C U B^C
Hannibal escreveu:Eu nao estou conseguindo entender bem, essa lei, eu vi pelos diagramas, mais tenho que provar nao so por diagramas mais por elementos, nao estou pedindo resposta mais sim onde procuro?
Bem, tipicamente você encontra esse conteúdo em livros sobre Álgebra de Conjuntos ou ainda sobre Matemática Discreta.
De qualquer modo, você já deve saber que para provar que dois conjuntos são iguais nós temos uma estratégia padrão para isso. Por exemplo, se desejamos provar que X = Y, nós temos que provar duas coisas: 1) se

, então

; 2) se

, então

. Ao provar essas duas proposições, no fundo nós provamos que

e

. Quando isso acontece, temos que X = Y.
Por exemplo, considere o quesito (a). Nós temos os conjuntos

e

. Para provar que eles são iguais, você precisa provar que: 1) se

, então

; 2) se

, então

.
Agora tente concluir o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Análise combinatória, Probabilidade e Noções de estatística
por mateusmarques » Qui Abr 07, 2011 16:13
- 2 Respostas
- 4664 Exibições
- Última mensagem por benni

Dom Abr 10, 2011 11:36
Estatística
-
- analise combinatoria probabilidade estatistica
por silvia fillet » Sex Mai 11, 2012 20:41
- 1 Respostas
- 4416 Exibições
- Última mensagem por leomjr

Qui Mai 17, 2012 17:22
Estatística
-
- Noções De Estatística
por Kamila » Dom Out 30, 2011 17:48
- 1 Respostas
- 2051 Exibições
- Última mensagem por Neperiano

Ter Nov 01, 2011 15:21
Estatística
-
- Estatística, Combinatória e Probabilidade
por Trakna » Ter Fev 23, 2010 09:41
- 0 Respostas
- 2011 Exibições
- Última mensagem por Trakna

Ter Fev 23, 2010 09:41
Estatística
-
- Estatística, Combinatória e Probabilidade
por cardosor23 » Qua Abr 18, 2012 18:53
- 1 Respostas
- 3345 Exibições
- Última mensagem por fraol

Qua Abr 18, 2012 23:16
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.