por sergioluizom » Ter Abr 17, 2012 16:15
2) Pretende-se estender um cabo de uma usina de força à margem de um rio de 900m de largura até uma fábrica situada do outro lado do rio, 3.000m rio abaixo. O custo para estender um cabo pelo rio é de R$ 5,00 o metro, enquanto que para estendê-lo por terra custa R$ 4,00 o metro. Qual é o percurso mais econômico para o cabo?
Y =

C(x,y) = 4x +5Y
c(x) = 4x + 5

c(x) = 4x + 5?....
Estou na dúvida nessa parte como irei realizar a regra da cadeia...
Editado pela última vez por
sergioluizom em Ter Abr 17, 2012 16:47, em um total de 3 vezes.
-
sergioluizom
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Abr 17, 2012 16:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistema de Informação
- Andamento: cursando
por LuizAquino » Sex Abr 20, 2012 19:10
sergioluizom escreveu:2) Pretende-se estender um cabo de uma usina de força à margem de um rio de 900m de largura até uma fábrica situada do outro lado do rio, 3.000m rio abaixo. O custo para estender um cabo pelo rio é de R$ 5,00 o metro, enquanto que para estendê-lo por terra custa R$ 4,00 o metro. Qual é o percurso mais econômico para o cabo?
sergioluizom escreveu:Y =

C(x,y) = 4x +5Y
c(x) = 4x + 5

c(x) = 4x + 5?....
Estou na dúvida nessa parte como irei realizar a regra da cadeia...
Para estudar a resolução de uma derivada (e muito mais), você pode usar um programa. Por exemplo, o
SAGE, o Mathematica, o Maple, etc.
Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do
SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a resolução dessa derivada.
- Acesse a página: http://www.wolframalpha.com/
- No campo de entrada, digite:
- Código: Selecionar todos
d/dx 4x + 5sqrt(900^2 + (3000-x)^2)
- Clique no botão de igual ao lado do campo de entrada.
- Espere aparecer o resultado da derivada. Clique então no botão "Show steps" que fica ao lado do resultado.
- Pronto! Agora basta estudar o procedimento.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problemas de Otimização
por lucasabreuo » Seg Mai 06, 2019 11:52
- 0 Respostas
- 2072 Exibições
- Última mensagem por lucasabreuo

Seg Mai 06, 2019 11:52
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações de Derivada - Problemas de Otimização - Socorro!!
por Josi » Ter Nov 03, 2009 17:30
- 1 Respostas
- 2702 Exibições
- Última mensagem por marciommuniz

Ter Nov 03, 2009 22:30
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações de Derivada - Problemas de Otimização - Socorro!!
por Josi » Ter Nov 03, 2009 17:31
- 1 Respostas
- 4666 Exibições
- Última mensagem por Elcioschin

Qua Nov 04, 2009 08:40
Cálculo: Limites, Derivadas e Integrais
-
- [Ajuda]Otimização
por Jhonata » Qua Jun 20, 2012 00:45
- 3 Respostas
- 1338 Exibições
- Última mensagem por Russman

Qua Jun 20, 2012 02:06
Cálculo: Limites, Derivadas e Integrais
-
- [otimização] essa eu não consegui fazer, ajuda
por vinicastro » Dom Dez 16, 2012 20:30
- 1 Respostas
- 1617 Exibições
- Última mensagem por young_jedi

Dom Dez 16, 2012 22:07
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.