por stuart clark » Dom Abr 15, 2012 13:05
Prove that

-
stuart clark
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Mai 28, 2011 00:32
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por fraol » Sáb Abr 21, 2012 16:28
stuart clark escreveu:Prove that

Let

be a complex number such that:

and

.
So:

. Then we have:

and

.
Now, with results above, let's do some algebraic manipulation with the expression inside natural log and use the Euler identity

:

.
Returning to the original expression and applying the last result we get:

.
From trigonometry, we have:

.
Replacing

and

in this last expression:

,
that is the desired result (note that this solution doesn't contains the negative sign ).
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por stuart clark » Qua Mai 02, 2012 01:07
Thanks fraol
-
stuart clark
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Mai 28, 2011 00:32
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Prove: n(A X B) = n(A) * n(B)
por juliomarcos » Dom Set 14, 2008 02:58
- 3 Respostas
- 5132 Exibições
- Última mensagem por admin

Qua Set 24, 2008 05:33
Conjuntos
-
- Prove que
por Balanar » Dom Ago 29, 2010 17:22
- 1 Respostas
- 2216 Exibições
- Última mensagem por MarceloFantini

Seg Ago 30, 2010 01:24
Álgebra Elementar
-
- Prove
por chronoss » Dom Abr 21, 2013 16:52
- 3 Respostas
- 2902 Exibições
- Última mensagem por chronoss

Seg Abr 22, 2013 14:23
Álgebra Elementar
-
- Prove
por chronoss » Seg Abr 29, 2013 20:40
- 1 Respostas
- 1872 Exibições
- Última mensagem por chronoss

Sáb Mai 04, 2013 13:55
Álgebra Elementar
-
- PROVE
por pedro22132938 » Sex Ago 21, 2015 20:10
- 1 Respostas
- 2714 Exibições
- Última mensagem por e8group

Dom Ago 23, 2015 20:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.