• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] integral dupla

[Integral] integral dupla

Mensagempor -civil- » Seg Abr 09, 2012 23:52

Calcular \int \int \limits_{B} f(x,y) dx dy

Sendo que f(x,y) = cos(2y).\sqrt{4 - (senx)^2} e B é o triângulo de vértices (0,0), (0, \pi/2) e (\pi/2,\pi/2).


Bom eu estou tentando e não chego a lugar nenhum. Pensei em integrar primeiro em relação a x e resolver por substituição mas não deu certo. Tentei integrar primeiro em relação a y e chego a uma integral que eu não sei mais como desenvolver:

\int \int \limits_{0}^{\pi/2} \frac{-1}{2}sen(2x)\sqrt{4 - (senx)^2}dx

Obrigada pela ajuda!
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] integral dupla

Mensagempor LuizAquino » Ter Abr 10, 2012 11:18

-civil- escreveu:Calcular \int \int \limits_{B} f(x,y) dx dy

Sendo que f(x,y) = cos(2y).\sqrt{4 - (senx)^2} e B é o triângulo de vértices (0,0), (0, \pi/2) e (\pi/2,\pi/2).



-civil- escreveu:Bom eu estou tentando e não chego a lugar nenhum. Pensei em integrar primeiro em relação a x e resolver por substituição mas não deu certo. Tentei integrar primeiro em relação a y e chego a uma integral que eu não sei mais como desenvolver:

\int \int \limits_{0}^{\pi/2} \frac{-1}{2}sen(2x)\sqrt{4 - (senx)^2}dx


Tem apenas um erro de digitação. Você colocou um símbolo a mais de integral. O correto seria:

\int_0^\frac{\pi}{2} -\frac{1}{2}\,\textrm{sen}\,2x \sqrt{4 - \, \textrm{sen}^2\, x}\, dx

Para continuar a resolução, use a substituição u = 4 - \textrm{sen}^2\, x .

Além disso, lembre-se da seguinte identidade trigonométrica:

\textrm{sen}\,2\alpha = 2\,\textrm{sen}\,\alpha \cos \alpha
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)