• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas, Limites

Derivadas, Limites

Mensagempor Grasi » Qui Jun 25, 2009 00:12

Queremos construir uma lata cilíndrica, de volume 900 ml para servir de embalagem para óleo. Quais devem ser as medidas do raio da base e da altura para que a lata seja a mais econômica possível?

Já tentei encontrar a solução em 3 livros q tenho, mas os exemplos e teorias não estão me ajudando.

Peço a gentileza para ajudar-me, agradeço dede já. Muito obrigada!
Grasi
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 24, 2009 23:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Derivadas, Limites

Mensagempor Molina » Qui Jun 25, 2009 11:05

Grasi escreveu:Queremos construir uma lata cilíndrica, de volume 900 ml para servir de embalagem para óleo. Quais devem ser as medidas do raio da base e da altura para que a lata seja a mais econômica possível?

Já tentei encontrar a solução em 3 livros q tenho, mas os exemplos e teorias não estão me ajudando.

Peço a gentileza para ajudar-me, agradeço dede já. Muito obrigada!


Bom dia, Grasi.

Precisamos minimizar a área superficial da lata, que é dada por: A=2 \pi r^2 + 2 \pi r h

O volume é dado por V= \pi r^2 *h. Ou seja, nesse cado V= \pi r^2 *h=900 \Rightarrow h= \frac{900}{ \pi r^2}

Ou seja, substituindo na equação da área, temos: A=2 \pi r^2 + 2 \pi r * \frac{900}{ \pi r^2} \Rightarrow A=2 \pi r^2 + \frac{1800}{r}

Devemos encontrar o mínimo desta função, logo, derivando A:

A'=4 \pi r - \frac{1800}{r^2}=0 \Rightarrow r^3= \frac{1800}{4 \pi} \Rightarrow r=\sqrt[3]{\frac{450}{\pi}}

Fazendo o teste da segunda derivada, temos que A''>0, \forall r>0. Com isso r=\sqrt[3]{\frac{450}{\pi}} é um ponto de mínimo local. Mas o gráfico de A é côncavo para cima e o ponto de mínimo local deve ser também o mínimo absoluto.

Conclusão: O raio ideal da base da lata é r=\sqrt[3]{\frac{450}{\pi}} e a altura ideal dessa lata é h={\frac{900}{\pi * (\sqrt[3]{\frac{450}{\pi}})^2}=2*\sqrt[3]{\frac{450}{\pi}}=2r

Problema grande, porém, se analisar passo a passo verá que não terá grnades problemas.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?