• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor carvalhothg » Sex Abr 06, 2012 21:42

Como calculo o limite abaixo, sem utilizar a regra de L'Hospital:

\lim_{t\rightarrow\infty}t.{e}^{-st}

Onde s é um numero complexo.
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites

Mensagempor LuizAquino » Sáb Abr 07, 2012 14:19

carvalhothg escreveu:Como calculo o limite abaixo, sem utilizar a regra de L'Hospital:

\lim_{t\rightarrow\infty}t.{e}^{-st}

Onde s é um numero complexo.


A parte real de s é maior ou menor do que zero?

Vale lembrar que para calcular um limite do tipo \lim_{t\to+\infty} te^{-kt} , com k real não nulo, sem usar a Regra de L'Hospital, só podemos aplicar uma análise qualitativa (não há simplificações algébricas).

Se k > 0, então podemos escrever esse limite como \lim_{t\to +\infty} \frac{t}{e^{kt}} . Tanto o numerador quanto o denominador tendem para infinito. Entretanto, o crescimento do denominador é muito maior do que o crescimento do numerador. Nesse caso, teremos que \lim_{t\to +\infty} \frac{t}{e^{kt}} = 0 .

Por outro lado, se k < 0, então \lim_{t\to +\infty} t e^{-kt} = (+\infty)\cdot(+\infty) = +\infty .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.