por Rhyu » Sex Abr 06, 2012 17:26
Bom estou com dificuldades em achar a matriz inversa em matrizes 4x4 não sei por onde eu começo a zerar as colunas como nesse exercicio
I1 1 1 1I Linha 1 (1,1,1,1)
I1 2 -1 2I Linha 2 (1,2,-1,2)
I1-1 2 1I Linha 3 (1,-1,2,1)
I1 3 3 2I Linha 4 (1,3,3,2)
Como eu acho a inversa dessa aplicando o método de Gauss Jordan, gostaria de saber também qual a ordem eu devo seguir para zerar os termos.
-
Rhyu
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Mar 23, 2012 21:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por LuizAquino » Sex Abr 06, 2012 21:31
Rhyu escreveu:Bom estou com dificuldades em achar a matriz inversa em matrizes 4x4 não sei por onde eu começo a zerar as colunas como nesse exercicio
I1 1 1 1I Linha 1 (1,1,1,1)
I1 2 -1 2I Linha 2 (1,2,-1,2)
I1-1 2 1I Linha 3 (1,-1,2,1)
I1 3 3 2I Linha 4 (1,3,3,2)
Como eu acho a inversa dessa aplicando o método de Gauss Jordan, gostaria de saber também qual a ordem eu devo seguir para zerar os termos.
Se você já sabe determinar a inversa de uma matriz 3 por 3 usando o método de Gauss Jordan, então basta aplicar a mesma ideia para uma matriz 4 por 4.
Siga basicamente os seguintes passos:
1) transformar em 0 todos os elementos abaixo de

;
2) transformar em 0 todos os elementos abaixo de

;
3) transformar em 0 todos os elementos abaixo de

;
4) transformar em 0 todos os elementos acima de

;
5) transformar em 0 todos os elementos acima de

;
6) transformar em 0 todos os elementos acima de

;
7) transformar em 1 todos os elementos na diagonal principal.
Veja o início do processo.
Passo 1)




Passo 2)



Passo 3)


Agora tente terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Método de Gauss Jordan
por Claudin » Sex Ago 26, 2011 03:00
- 2 Respostas
- 4665 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 22:51
Álgebra Elementar
-
- Método de de Gauss-Jordan
por AmandaPmend » Seg Nov 10, 2014 14:46
- 1 Respostas
- 3430 Exibições
- Última mensagem por adauto martins

Ter Nov 11, 2014 14:51
Álgebra Linear
-
- Resolução de sistemas (método de Gauss-Jordan)
por Danilo » Qua Nov 28, 2012 20:08
- 1 Respostas
- 3015 Exibições
- Última mensagem por e8group

Qua Nov 28, 2012 20:42
Sistemas de Equações
-
- Como aplicar o metodo de Gauss Jordan nesse sistema.
por 380625 » Sáb Ago 20, 2011 16:19
- 3 Respostas
- 5930 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 22:26
Sistemas de Equações
-
- Eliminação Gauss Jordan
por kassya » Ter Abr 22, 2014 16:54
- 0 Respostas
- 2615 Exibições
- Última mensagem por kassya

Ter Abr 22, 2014 16:54
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.