• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral dupla - 5

Integral dupla - 5

Mensagempor DanielFerreira » Sex Abr 06, 2012 20:00

danjr5 escreveu:Calcule \int_{}^{}\int_{B}^{} f(x,y)dx dy sendo f(x,y) = xy e B = {(x,y) \in \Re^2/x^2 + y^2 \leq 2, y \leq x, x \geq 0}

da figura, conclui que:
- \sqrt[]{2} \leq y \leq 0 e 0 \leq x \leq \sqrt[]{2 - y^2}

mas deu errado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Integral dupla - 5

Mensagempor LuizAquino » Sex Abr 06, 2012 20:10

danjr5 escreveu:
danjr5 escreveu:Calcule \int_{}^{}\int_{B}^{} f(x,y)dx dy sendo f(x,y) = xy e B = {(x,y) \in \Re^2/x^2 + y^2 \leq 2, y \leq x, x \geq 0}

da figura, conclui que:
- \sqrt[]{2} \leq y \leq 0 e 0 \leq x \leq \sqrt[]{2 - y^2}

mas deu errado!


De fato, está errado. O correto seria:

0 \leq x \leq \sqrt{2}

-\sqrt{2-x^2} \leq y \leq x
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral dupla - 5

Mensagempor DanielFerreira » Sex Abr 06, 2012 20:16

Grato.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)