• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites trigonométricos (subtração de tangentes)

Limites trigonométricos (subtração de tangentes)

Mensagempor Arthur_Bulcao » Seg Abr 02, 2012 17:27

Mais uma vez, eu com dúvidas.
Sem usar L'Hospital, poderiam me ajudar a resolver:

\lim_{x\rightarrow a}\;\frac{tg(x)-tg(a)}{x-a}

Não tenho a mínima noção de como começar.
Obrigado.
Editado pela última vez por Arthur_Bulcao em Seg Abr 02, 2012 18:04, em um total de 1 vez.
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Limites trigonométricos (subtração de tangentes)

Mensagempor Arthur_Bulcao » Seg Abr 02, 2012 18:04

Saquei!!

Lembrei que
tg(a-b)=\frac{\emph{tg(a)-tg(b)}}{1+tg(a).tg(b)}\;\Rightarrow\\\;\emph{tg(a)-tg(b)}=tg(a-b).[1+tg(a).tg(b)]

e dá pra substituir:
\lim_{x\rightarrow a}\;\frac{\emph{tg(x)-tg(a)}}{x-a} \Rightarrow Substituindo \Rightarrow\,\lim_{x\rightarrow a}\;\frac{\emph{tg(a-b).[1+tg(a).tg(b)]}}{x-a}

Usando uma das propriedades de limites, temos:
\lim_{x\rightarrow a}\;\frac{tg(a-b)}{x-a}\,.\,\lim_{x\rightarrow a}[1+tg(a).tg(b)]

Em suma, o resultado é

\lim_{x\rightarrow a}\;\frac{tg(a-b)}{x-a}\,.\,\lim_{x\rightarrow a}[1+tg(a).tg(b)]\:=\:sec^2a
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Limites trigonométricos (subtração de tangentes)

Mensagempor MarceloFantini » Seg Abr 02, 2012 19:28

Sua resolução está mal escrita. Primeiro, você esqueceu de trocar o b por x, segundo, você não mostrou porque \lim_{x \to a} \frac{tg(a-x)}{x-a} = 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}