• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Trigonometrica

Integral Trigonometrica

Mensagempor Guilherme Carvalho » Dom Abr 01, 2012 22:05

Não consegui resolver essa integral , alguém pode me ajudar por favor...


\int_{}^{}cotg^2(x)dx
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Integral Trigonometrica

Mensagempor MarceloFantini » Seg Abr 02, 2012 00:57

Sabemos que cotg^2 \, x = \frac{\cos^2 x}{sen^2  x}. Daí, \cos^2 x = 1 - sen^2  x pela relação fundamental, logo cotg^2 \, x = \frac{\cos^2 x}{sen^2 \, x} = \frac{1 - sen^2 \, x}{sen^2 \, x} = cossec^2 \, x - 1.

Portanto \int cotg^2  x \, dx = \int (cossec^2 \, x - 1) \, dx. Agora deve ser simples.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral Trigonometrica

Mensagempor Guilherme Carvalho » Seg Abr 02, 2012 19:29

Mto obrigado MarceloFantini..... :-D
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.