• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema do confronto

Teorema do confronto

Mensagempor jemourafer » Dom Abr 01, 2012 20:23

Como posso resolver essa questão?

" Seja f: R->R uma função tal que: x².cos(x) \leq f(x) \leqx.sen(x),
para todo x \in \left(\frac{-\pi}{2},\frac{\pi}{2} \right). Prove que f é contínua em 0. "
jemourafer
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 01, 2012 20:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Teorema do confronto

Mensagempor NMiguel » Dom Abr 01, 2012 21:00

Para mostrar que f é contínua em 0, precisamos mostrar que \lim_{x \to 0}f(x)=f(0)

Como x^{2}\cdot \cos x\leq f(x)\leq x\cdot \sin x, então 0^{2}\cdot \cos 0\leq f(0)\leq 0\cdot \sin 0, ou seja, 0\leq f(0)\leq 0. Daqui podemos concluir que f(0)=0

Da mesma forma, se x^{2}\cdot \cos x\leq f(x)\leq x\cdot \sin x, então, \lim_{x \to 0}x^{2}\cdot \cos x\leq \lim_{x \to 0}f(x)\leq \lim_{x \to 0}x\cdot \sin x

Como \lim_{x \to 0}x^{2}\cdot \cos x =0^{2}\cdot \cos 0 e \lim_{x \to 0}x\cdot \sin x = 0\cdot \sin 0, porque ambas são funções contínuas, então 0^{2}\cdot \cos 0\leq \lim_{x \to 0}f(x)\leq0\cdot \sin 0,ou seja, 0\leq \lim_{x \to 0}f(x)\leq 0

Daqui podemos concluir que \lim_{x \to 0}f(x)= 0
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: