• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função modular] Dúvida com relação a raízes

[Função modular] Dúvida com relação a raízes

Mensagempor exburro » Sáb Mar 31, 2012 01:23

Olá, eu era bem idiota no colegial e entrei na engenharia, tenho umas dúvidas bem retardadas e aqui vai uma.
Estou tentando resolver esta função
f(x)=x²-|3x+4|

O que eu fiz até agora foi:
1. p/ (3x+4)>=0 x>=-4/3
x²-3x+4=0

2. p/ (3x+4)<0 x<-4/3
x²+3x-4


Agora eu deveria fazer o gráfico das duas mas tenho a seguinte dúvida... Como vou calcular as raízes se a função 1. terá um delta negativo?


Obrigado pessoal, estou me empenhando e descobrindo a cada dia o quão bom é estudar. Até mais.
exburro
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mar 31, 2012 01:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Automação
Andamento: cursando

Re: [Função modular] Dúvida com relação a raízes

Mensagempor LuizAquino » Sex Abr 06, 2012 12:40

exburro escreveu:Estou tentando resolver esta função
f(x)=x²-|3x+4|


Não faz sentido dizer que você está "tentando resolver esta função".

O que você poderia dizer é que está tentando esboçar o gráfico da função.

exburro escreveu:1. p/ (3x+4)>=0 x>=-4/3
x²-3x+4=0


Errado. Para x >= -4/3 temos que |3x + 4| = 3x + 4. Sendo assim, temos que:
x² - |3x + 4| = x² - (3x + 4) = x² - 3x - 4.

Em resumo: para x >= -4/3 a expressão para a função é x² - 3x - 4.

exburro escreveu:2. p/ (3x+4)<0 x<-4/3
x²+3x-4


Errado. Para x < -4/3 temos que |3x + 4| = -(3x + 4). Sendo assim, temos que:
x² - |3x + 4| = x² - [-(3x + 4)] = x² + 3x + 4.

Em resumo: para x < -4/3 a expressão para a função é x² + 3x + 4.

Juntando o que foi dito nas partes 1. e 2., temos que a função pode ser reescrita como:

f(x) = \begin{cases}x^2 - 3x - 4, \textrm{ se } x \geq -\frac{4}{3} \\ x^2 + 3x + 4, \textrm{ se } x < -\frac{4}{3} \end{cases}

exburro escreveu:Agora eu deveria fazer o gráfico das duas mas tenho a seguinte dúvida... Como vou calcular as raízes se a função 1. terá um delta negativo?


Quando uma função polinomial do segundo grau tem discriminante (delta) negativo, ela não tem raízes reais e portanto o seu gráfico não toca o eixo x. O seu gráfico ficará totalmente acima ou totalmente abaixo do eixo x, sendo que ele apenas tocará no eixo y.

Para revisar como construir o gráfico de uma função polinomial do segundo grau, eu recomendo que você assista a videoaula "Matemática - Aula 5 - Função do Segundo Grau". Ela está disponível no canal do Nerckie:

http://www.youtube.com/nerckie

Além disso, vale lembar que a função do exercício é dividida em duas partes. Para cada parte teremos um "pedaço" de parábola. Ou seja, cada parte será um "pedaço" do gráfico de uma função polinomial do segundo grau.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59