• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Continuidades

Continuidades

Mensagempor Kabection » Qui Mar 29, 2012 22:20

queria uma ajuda para conseguir fatorar esse limite, o unico modo que consigo para resolver, é usando a tabela de valores próximos do x usando calculadora. Alguém sabe fazer de outro modo?

h(x)= {\frac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} se x for diferente de 5, L\ se\ x=5

Usando a tabela calculando valores próximos a resposta dá 1,4142 = \sqrt{2}.
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Continuidades

Mensagempor LuizAquino » Sex Mar 30, 2012 02:21

Kabection escreveu:queria uma ajuda para conseguir fatorar esse limite, o unico modo que consigo para resolver, é usando a tabela de valores próximos do x usando calculadora. Alguém sabe fazer de outro modo?

h(x)= {\frac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} se x for diferente de 5, L\ se\ x=5

Usando a tabela calculando valores próximos a resposta dá 1,4142 = \sqrt{2}.


Dica

Multiplique o numerador e o denominador por \left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right) :

\dfrac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} = \dfrac{\left(\sqrt{x} - \sqrt{5}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}{\left(\sqrt{x+5} - \sqrt{10}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Continuidades

Mensagempor Kabection » Sex Mar 30, 2012 22:38

\dfrac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} = \dfrac{\left(\sqrt{x} - \sqrt{5}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}{\left(\sqrt{x+5} - \sqrt{10}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}

Fica:

\frac{x-5}{x+5-10} * \frac{\sqrt{x+5}+\sqrt{10}}{\sqrt{x}+\sqrt{5}}

Cortando (x-5) com (x+5-10) fica:

\frac{\sqrt{x+5}+\sqrt{10}}{\sqrt{x}+\sqrt{5}}

Substituindo x=5 fica:

\frac{\sqrt{10}+\sqrt{10}}{\sqrt{5}+\sqrt{5}} = \frac{2\sqrt{10}}{2\sqrt{5}}

Cortando 2 e usando a propriedade da divisão das raízes:

\sqrt{10/5} = \sqrt{2}

Valeu Luiz Aquino.
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.